
www.manaraa.com

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A Survey of Program Slicing Techniques

F. Tip

Computer Science/Department of Software Technology

CS-R9438 1994

www.manaraa.com

www.manaraa.com

A Survey of Program Slicing TechniquesFrank TipCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlandstip@cwi.nlAbstractA program slice consists of the parts of a program that (potentially) a�ect thevalues computed at some point of interest, referred to as a slicing criterion. The taskof computing program slices is called program slicing. The original de�nition of aprogram slice was presented by Weiser in 1979. Since then, various slightly di�erentnotions of program slices have been proposed, as well as a number of methods tocompute them. An important distinction is that between a static and a dynamic slice.The former notion is computed without making assumptions regarding a program'sinput, whereas the latter relies on some speci�c test case.Procedures, arbitrary control ow, composite datatypes and pointers, and inter-process communication each require a speci�c solution. We classify static and dynamicslicing methods for each of these features, and compare their accuracy and e�ciency.Moreover, the possibilities for combining solutions for di�erent features are investi-gated. We discuss how compiler-optimization techniques can be used to obtain moreaccurate slices. The paper is concluded with an overview of the applications of pro-gram slicing, which include debugging, program integration, dataow testing, andsoftware maintenance.1991 Mathematics Subject Classi�cation: 68Q55 [Theory of computing]: Seman-tics, 68Q60 [Theory of computing]: Speci�cation and veri�cation of programs.1991 CR Categories: D.2.2 [Software engineering]: Tools and Techniques, D.2.5[Software engineering]: Testing and debugging, D.2.6 [Software engineering]:Programming environments, D.2.7 [Software engineering]: Distribution and Main-tenance.Key Words & Phrases: Program slicing, static slicing, dynamic slicing, program anal-ysis, debugging, data dependence, control dependence, program dependence graph.1 slice n0sl��sn n 1 : a thin at piece cut from something 2 : a wedge-shaped blade(as for serving �sh) 3 : a ight of a ball (as in golf) that curves in the direction ofthe dominant hand of the player propelling it2 slice vb sliced; slic-ing 1 : to cut a slice from; also to cut into slices 2 : to hit (aball) so that a slice results The Merriam-Webster Dictionary
1

www.manaraa.com

1 OverviewWe present a survey of algorithms for program slicing that can be found in the presentliterature. A program slice consists of the parts of a program that (potentially) a�ect thevalues computed at some point of interest, referred to as a slicing criterion. Typically, aslicing criterion consists of a pair (line-number; variable). The parts of a program whichhave a direct or indirect e�ect on the values computed at a slicing criterion C are calledthe program slice with respect to criterion C. The task of computing program slices iscalled program slicing.The original concept of a program slice was introduced by Weiser [82, 83, 85]. Weiserclaims that a slice corresponds to the mental abstractions that people make when theyare debugging a program, and suggests the integration of program slicers in debuggingenvironments. Various slightly di�erent notions of program slices have been proposed,as well as a number of methods to compute slices. The main reason for this diversity isthe fact that di�erent applications require di�erent properties of slices. Weiser de�ned aprogram slice S as a reduced, executable program obtained from a program P by removingstatements, such that S replicates part of the behavior of P . Another common de�nition ofa slice is a subset of the statements and control predicates of the program which directlyor indirectly a�ect the values computed at the criterion, but which do not necessarilyconstitute an executable program. An important distinction is that between a static anda dynamic slice. The former notion is computed without making assumptions regarding aprogram's input, whereas the latter relies on some speci�c test case. Below, in Sections 1.1and 1.2, we consider these notions in some detail.Features of programming languages such as procedures, arbitrary control ow, com-posite datatypes and pointers, and interprocess communication each require a speci�csolution. Static and dynamic slicing methods for each of these features are classi�ed andcompared in terms of accuracy and e�ciency. In addition, we investigate the possibilitiesfor integrating solutions for di�erent language features. Throughout this paper, slicingalgorithms are compared by applying them to similar examples.1.1 Static SlicingFigure 1 (a) shows an example program which asks for a number n, and computes the sumand the product of the �rst n positive numbers. Figure 1 (b) shows a slice of this programwith respect to criterion (10, product). As can be seen in the �gure, all computationsinvolving variable sum have been `sliced away'.In Weiser's approach, slices are computed by computing consecutive sets of indirectlyrelevant statements, according to data ow and control ow dependences. Only staticallyavailable information is used for computing slices; hence, this type of slice is referredto as a static slice. An alternative method for computing static slices was suggestedby Ottenstein and Ottenstein [69], who restate the problem of static slicing in termsof a reachability problem in a program dependence graph (PDG) [27, 58]. A PDG is adirected graph with vertices corresponding to statements and control predicates, and edgescorresponding to data and control dependences. The slicing criterion is identi�ed with avertex in the PDG, and a slice corresponds to all PDG vertices from which the vertex underconsideration can be reached. Various program slicing approaches we discuss later utilizemodi�ed and extended versions of PDGs as their underlying program representation. Yet2

www.manaraa.com

(1) read(n);(2) i := 1;(3) sum := 0;(4) product := 1;(5) while i <= n dobegin(6) sum := sum + i;(7) product := product * i;(8) i := i + 1end;(9) write(sum);(10) write(product)
(1) read(n);(2) i := 1;(3)(4) product := 1;(5) while i <= n dobegin(6)(7) product := product * i;(8) i := i + 1end;(9)(10) write(product)(a) (b)Figure 1: (a) An example program. (b) A slice of the program w.r.t. criterion (10, product).another approach was proposed by Bergeretti and Carr�e [16], who de�ne slices in terms ofinformation-ow relations which are derived from a program in a syntax-directed fashion.The slices mentioned so far are computed by gathering statements and control pred-icates by way of a backward traversal of the program, starting at the slicing criterion.Therefore, these slices are referred to as backward (static) slices. Bergeretti & Carr�e werethe �rst to de�ne a notion of a forward static slice in [16], although Reps and Bricker werethe �rst to use this terminology [73]. Informally, a forward slice consists of all statementsand control predicates dependent on the slicing criterion, a statement being `dependent'on the slicing criterion if the values computed at that statement depend on the valuescomputed at the slicing criterion, or if the values computed at the slicing criterion de-termine the fact if the statement under consideration is executed or not. Backward andforward slices1 are computed in a similar way; the latter requires tracing dependences inthe forward direction.1.2 Dynamic SlicingAlthough the exact terminology `dynamic program slicing' was �rst introduced by Koreland Laski in [56], dynamic slicing may very well be regarded as a non-interactive variationof Balzer's notion of owback analysis [10]. In owback analysis, one is interested howinformation ows through a program to obtain a particular value: the user interactivelytraverses a graph that represents the data and control dependences between statementsin the program. For example, if the value computed at statement s depends on the valuescomputed at statement t, the user may trace back from the vertex corresponding to state-ment s to the vertex for statement t. Recently, owback analysis has been implementede�ciently for parallel programs [22, 67].In the case of dynamic program slicing, only the dependences that occur in a speci�cexecution of the program are taken into account. A dynamic slicing criterion speci�esthe input, and distinguishes between di�erent occurrences of a statement in the executionhistory; typically, it consists of triple (input; occurrence of a statement; variable). An al-ternate view of the di�erence between static and dynamic slicing is that dynamic slicing1Unless stated otherwise, \slice" will denote \backward slice" in the sequel.3

www.manaraa.com

(1) read(n);(2) i := 1;(3) while (i <= n) dobegin(4) if (i mod 2 = 0) then(5) x := 17else(6) x := 18;(7) i := i + 1end;(8) write(x)
(1) read(n);(2) i := 1;(3) while (i <= n) dobegin(4) if (i mod 2 = 0) then(5) x := 17else(6) ;(7) i := i + 1end;(8) write(x)(a) (b)Figure 2: (a) Another example program. (b) Dynamic slice w.r.t. criterion (n = 2, 81, x).assumes a �xed input for a program, whereas static slicing does not make assumptionsregarding the input. Hybrid approaches, where a combination of static and dynamicinformation is used to compute slices, are described in [22, 26, 49, 79].Figure 2 shows an example program and its dynamic slice w.r.t. the criterion (n = 2,81, x), where 81 denotes the �rst occurrence of statement 8 in the execution history of theprogram. Note that for input n = 2, the loop is executed twice, and that the assignmentsx := 17 and x = 18 are each executed once. In this example, the else branch of the ifstatement may be omitted from the dynamic slice since the assignment of 18 to variablex in the �rst iteration of the loop is `killed' by the assignment of 17 to x in the seconditeration2. By contrast, the static slice of the program in Figure 2 (a) w.r.t. criterion (8,x) consists of the entire program.1.3 Earlier WorkThere are a number of earlier frameworks for comparing slicing methods, as well as someearlier surveys of slicing methods.In [79], Venkatesh presents formal de�nitions of several types of slices in terms ofdenotational semantics. He distinguishes three independent dimensions according to whichslices can be categorized: static vs. dynamic, backward vs. forward, and closure vs.executable. Some of the slicing methods in the literature are classi�ed according to thesecriteria [5, 41, 44, 57, 69, 85]. Moreover, Venkatesh introduces the concept of a quasi-staticslice. This corresponds to situations where some of the inputs of a program are �xed, andsome are unknown. No constructive algorithms for computing slices are presented in [79].In [59], Lakhotia restates a number of static slicing methods [41, 69, 85] as well asthe program integration algorithm of [41] in terms of operations on directed graphs. Hepresents a uniform framework of graph slicing, and distinguishes between syntactic proper-ties of slices which can be obtained solely through graph-theoretic reasoning, and semanticproperties which involve interpretation of the graph representation of a slice. Although thepaper only addresses static slicing methods, it is stated that the dynamic slicing methodsof [5, 57] may be modeled in a similar way.2In fact, one might argue that the while construct may be replaced by the if statement in its body.This type of slice will be discussed in Section 5. 4

www.manaraa.com

Gupta and So�a present a generic algorithm for static slicing and the solution of relateddataow problems (such as determining reaching de�nitions) that is based on performinga traversal of the control ow graph (CFG) [35]. The algorithm is parameterized with: (i)the direction in which the CFG should be traversed (backward or forward), (ii) the typeof dependences under consideration (data and/or control dependence), (iii) the extent ofthe search (i.e., should only immediate dependences be taken into account, or transitivedependences as well), and (iv) whether only the dependences that occur along all CFG-paths paths, or dependences which occur along some CFG-path should be taken intoaccount. A slicing criterion is either a set of variables at a certain program point or aset of statements. For slices that take data dependences into account, one may choosebetween the values of variables before or after a statement.In [43], Horwitz and Reps present a survey of the work that has been done at the Uni-versity of Wisconsin-Madison on slicing, di�erencing and integration of single-procedureand multi-procedure programs, as operations on program dependence graphs. In ad-dition to discussing the motivation for this work in considerable detail, the most sig-ni�cant de�nitions, algorithms, theorems, and complexity results that can be found in[37, 39, 41, 42, 44, 76] are presented.An earlier classi�cation of static and dynamic slicingmethods was presented by Kamkarin [48, 49]. The di�erences between Kamkar's work and ours may be summarized as follows.First, our paper is more up-to-date and more complete; for instance, Kamkar does notaddress any of the papers that discuss slicing in the presence of arbitrary control ow[2, 8, 9, 21] or methods for computing slices that are based on information-ow relations[16, 33]. Second, the papers are organized in a di�erent way. Whereas Kamkar discusseseach slicing method and its applications separately, this paper is organized in terms of anumber of `orthogonal' problems, such as the problems posed by procedures, or compositevariables, aliasing, and pointers. This approach enables us to address the possibilities forcombining solutions to di�erent `orthogonal' problems. Third, unlike Kamkar's work wecompare the accuracy and e�ciency of slicing methods, and we attempt to determine thefundamental strengths and weaknesses of each slicing method, irrespective of its originalpresentation. Finally, we suggest a number of directions for improving the accuracy ofslicing algorithms.1.4 Organization of the PaperThe remainder of this paper is organized as follows. In Section 2, we will introduce thecornerstones of most slicing algorithms: the notions of data dependence and control de-pendence. Readers familiar with these concepts may skip this section and consult it ondemand. Section 3 contains an overview of static slicing methods. First, the simple caseof slicing structured programs with scalar variables only is studied. Then, we addressalgorithms for slicing in the presence of procedures, arbitrary control ow, composite vari-ables and pointers, and interprocess communication. Section 3.6 compares and classi�esmethods for static slicing. Section 4 addresses dynamic slicing methods, and is organizedin a similar way as Section 3. Section 5 suggests how compiler-optimization techniquesmay be used to obtain more accurate slices. Applications of program slicing are discussedin Section 6. Finally, Section 7 summarizes the main conclusions of this survey.
5

www.manaraa.com

(1)

i := i + 1

(2) (3) (4) (5)

(10) (9)

(6)

(7)

(8)

Start read(n) i := 1 sum := 0 product := 1 i <= n

Stop write(product) write(sum)

sum+i
sum :=

product :=
product*iFigure 3: CFG of the example program of Figure 1 (a).2 Data Dependence and Control DependenceData dependence and control dependence are de�ned in terms of the CFG of a program.A CFG contains a node for each statement and control predicate in the program; an edgefrom node i to node j indicates the possible ow of control from the former to the latter.CFGs contain special nodes labeled Start and Stop corresponding to the beginning andthe end of the program, respectively.The sets Def(i) and Ref(i) denote the sets of variables de�ned and referenced atCFG node i, respectively. Several types of data dependences can be distinguished, suchas ow dependence, output dependence and anti dependence [27]. Flow dependences canbe further classi�ed as being loop-carried or loop-independent, depending whether or notthey arise as a result of loop iteration. For the purposes of slicing, only ow dependence isrelevant, and the distinction between loop-carried and loop-independent ow dependencescan be ignored. Node j is ow dependent on node i if there exists a variable x such that:� x 2 Def(i),� x 2 Ref(j), and� there exists a path from i to j without intervening de�nitions of x.Alternatively stated, the de�nition of x at node i is a reaching de�nition for node j.Control dependence is usually de�ned in terms of post-dominance. A node i in theCFG is post-dominated by a node by j if all paths from i to Stop pass through j. A nodej is control dependent on a node i if:� there exists a path P from i to j such that any u 6= i; j in P is post-dominated byj, and� i is not post-dominated by j.Determining the control dependences in programs with arbitrary control ow is studied in[27]. For programs with structured control ow, control dependences can be determinedin a simple syntax-directed manner [40]: the statements in the branches of an if or whileare control dependent on the control predicate.As an example, Figure 3 shows the CFG for the example program of Figure 1 (a).Node 7 is ow dependent on node 4 because: (i) node 4 de�nes variable product, (ii)node 7 references variable product, and (iii) there exists a path 4 ! 5 ! 6 ! 7 withoutintervening de�nitions of product. Node 7 is control dependent on node 5 because thereexists a path 5! 6! 7 such that: (i) node 6 is post-dominated by node 7, and (ii) node5 is not post-dominated by node 7. 6

www.manaraa.com

3 Methods for Static Slicing3.1 Basic Algorithms for Static SlicingIn this section, we study basic algorithms for static slicing of structured programs withoutnonscalar variables, procedures, and interprocess communication.3.1.1 Dataow EquationsThe original de�nition of program slicing that was introduced by Weiser in [85] is based oniterative solution of dataow equations3. Weiser de�nes a slice as an executable programthat is obtained from the original program by deleting zero or more statements. A slicingcriterion consists of a pair (n; V) where n is a node in the CFG of the program, andV a subset of the program's variables. In order to be a slice with respect to criterion(n; V), a subset S of the statements of program P must satisfy the following property:whenever P halts for a given input, S also halts for that input, computing the same valuesfor the variables in V whenever the statement corresponding to node n is executed. Atleast one slice exists for any criterion: the program itself. A slice is statement-minimalif no other slice for the same criterion contains fewer statements. Weiser argues thatstatement-minimal slices are not necessarily unique, and that the problem of determiningstatement-minimal slices is undecidable.Approximations of statement-minimal slices are computed in an iterative process, bycomputing consecutive sets of relevant variables for each node in the CFG. First, thedirectly relevant variables are determined, by only taking data dependences into account.Below, the notation i!CFG j indicates the existence of an edge in the CFG from node ito node j. For a slicing criterion C � (n; V), the set of directly relevant variables at nodei of the CFG, R0C(i) is de�ned as follows:� R0C(i) = V when i = n.� For every i !CFG j, R0C(i) contains all variables v such that either (i) v 2 R0C(j)and v 62 Def(i), or (ii) v 2 Ref(i), and Def(i) \R0C(j) 6= ;.From this, a set of directly relevant statements, S0C , is derived. S0C is de�ned as the set ofall nodes i which de�ne a variable v that is a relevant at a successor of i in the CFG:S0C � fi j Def(i) \R0C(j) 6= ;; i!CFG jgVariables referenced in the control predicate of an if or while statement are indirectlyrelevant, if (at least) one of the statements in its body is relevant. The range of inuenceInfl(b) of a branch statement b is de�ned as the set of statements that are control depen-dent on b. The branch statements BkC which are relevant due to the inuence they haveon nodes i in SkC are: BkC � fb j i 2 SkC ; i 2 Infl(b)g3Weiser's de�nition of branch statements with indirect relevance to a slice contains an error [86]. Wefollow the modi�ed de�nition proposed in [63]. However, we do not agree with the statement in [63] that\It is not clear how Weiser's algorithm deals with loops".
7

www.manaraa.com

Node # Def Ref Infl R0C R1C1 f n g ; ; ; ;2 f i g ; ; ; f n g3 f sum g ; ; f i g f i, n g4 f product g ; ; f i g f i, n g5 ; f i, n g f 6, 7, 8 g f product, i g f product, i, n g6 f sum g f sum, i g ; f product, i g f product, i, n g7 f product g f product, i g ; f product, i g f product, i, n g8 f i g f i g ; f product, i g f product, i, n g9 ; f sum g ; f product g f product g10 ; f product g ; f product g f product gTable 1: Results of Weiser's algorithm for the example program of Figure 1 (a) and slicingcriterion (10; product).The sets of indirectly relevant variables Rk+1C are determined by considering the variablesin the predicates of the branch statements BkC to be relevant.Rk+1C (i) � RkC(i) [[b2BkC R0(b;Ref(b))(i)The sets of indirectly relevant statements Sk+1C consist of the nodes in BkC together withthe nodes i which de�ne a variable that is relevant to a CFG successor j:Sk+1C � BkC [fi j Def(i) \Rk+1C (j) 6= ;; i!CFG jgThe sets Rk+1C and Sk+1C are nondecreasing subsets of the program's variables andstatements, respectively; the �xpoint of the computation of the Sk+1C sets constitutes thedesired program slice.As an example, we consider the program of Figure 1 (a) and criterion (10; product).Table 1 summarizes the Def, Ref, Infl sets, and the sets of relevant variables computedby Weiser's algorithm. The CFG of the program was shown earlier in Figure 3. Fromthe information in the table, and the de�nition of a slice, we obtain S0C = f2; 4; 7; 8g,B0C = f5g, and S1C = f1; 2; 4; 5; 7; 8g. For our example, the �xpoint of the sets ofindirectly relevant variables is reached at set S1C . The corresponding slice w.r.t. criterionC � (10; product) as computed by Weiser's algorithm is identical to the program shownin Figure 1 (b) apart from the fact that the output statement write(product) is notcontained in the slice.In fact, an output statement will never be part of a slice because: (i) its Def setis empty so that no other statement can either be data dependent on it, and (ii) nostatement can be control dependent on an output statement. In [43], Horwitz and Repssuggest a way for making an output value dependent on all previous output values bytreating a statement write(v) as an assignment output := output || v, where outputis a string-valued variable containing all output of the program, and `||' denotes stringconcatenation. Output statements can be included in the slice by including output in theset of variables speci�ed in the criterion.In [64], Lyle presents a modi�ed version of Weiser's algorithm for computing slices.Apart from some minor changes in terminology, this algorithm is essentially the same asthat in [85]. 8

www.manaraa.com

�� = ;�� = ;�� = Id�v:=e = Vars(e)� f e g�v:=e = f (e; v) g�v:=e = (Vars(e)� f v g) [(Id� (v; v))�S1;S2 = �S1 [(�S1 � �S2)�S1;S2 = (�S1 � �S2) [�S2�S1;S2 = �S1 � �S2�if e then S = (Vars(e)� f e g) [�S�if e then S = (f e g �Defs(S)) [�S�if e then S = (Vars(e)�Defs(S)) [�S [Id�if e then S1 else S2 = (Vars(e)� f e g) [�S1 [�S2�if e then S1 else S2 = (f e g � (Defs(S1) [Defs(S2))) [�S1 [�S2�if e then S1 else S2 = (Vars(e)� (Defs(S1) [Defs(S2))) [�S1 [�S2 [Id�while e do S = �?S � ((Vars(e)� f e g) [�S)�while edo S = (f e g �Defs(S)) [�S � �?S � ((Vars(e)�Defs(S)) [Id)�while edo S = �?S � ((Vars(e)�Defs(S)) [Id)Figure 4: De�nition of information-ow relations.Hausler restates Weiser's algorithm in the style of denotational semantics [36]. In deno-tational semantics, the behavior of a statement or sequence of statements is characterizedby de�ning how it transforms the state. In denotational slicing, a function � characterizesa language construct by de�ning how it a�ects the set of relevant variables (see [85]).Another function, �, uses � to express how slices can be constructed.3.1.2 Information-ow RelationsIn [16], Bergeretti and Carr�e de�ne a number of information-ow relations for programswhich can be used to compute slices. For a statement (or sequence of statements) S, avariable v, and an expression (i.e., a control predicate or the right-hand side of an assign-ment) e that occurs in S, the relations �S , �S, and �S are de�ned. These information-owrelations possess the following properties: (v; e) 2 �S i� the value of v on entry to S poten-tially a�ects the value computed for e, (e; v) 2 �S i� the value computed for e potentiallya�ects the value of v on exit from S, and (v; v0) 2 �S i� the value of v on entry to S maya�ect the value of v0 on exit from S. The set EvS of all expressions e for which (e; v) 2 �Scan be used to construct partial statements. A partial statement of statement S associatedwith variable v is obtained by replacing all statements in S that do not contain expressionsin EvS by empty statements.Information-ow relations are computed in a syntax-directed, bottom-up manner. Foran empty statement, the relations �S and �S are empty, and �S is the identity. For an as-signment v := e, �S contains (v0; e) for all variables v0 which occur in e, �S consists of (e; v),and �S contains (v0; v) for all variables which occur in e as well as (v00; v00) for all variables9

www.manaraa.com

Expression #a Potentially Affected Variables1 f n; sum; product; i g2 f sum; product; i g3 f sum g4 f product g5 f sum; product; i g6 f sum g7 f product g8 f sum; product; i g9 ;10 ;aExpression numbers correspond to line numbers in Figure 1 (a).Figure 5: Information-ow relation � for the example program of Figure 1 (a).v00 6= v. Figure 4 shows how information-ow relations for sequences of statements, condi-tional statements and loop statements are constructed from the information-ow relationsof their constituents. In the �gure, � denotes an empty statement, \�" relational join, Idthe identity relation, Vars(e) the set of variables occurring in expression e, and Defs(S)the set of variables that may be de�ned in statement S. The convoluted de�nition forwhile constructs is obtained by e�ectively transforming it into an in�nite sequence ofnested one-branch if statements. The relation �? used in this de�nition is the transitiveand reexive closure of �.A slice w.r.t. the value of a variable v at an arbitrary location can be computed byinserting a dummy assignment v0 := v at the appropriate place, where v0 is a variablethat did not previously occur in S. The slice w.r.t. the �nal value of v0 in the modi�edprogram is equivalent to a slice w.r.t. v at the selected location in the original program.Static forward slices can be derived from relation �S in a way that is similar to themethod for computing static backward slices from the �S relation.Figure 5 shows the information-ow relation � for the (entire) program of Figure 1(a)4. From this relation it follows that the set of expressions which potentially a�ect thevalue of product at the end of the program are f1; 2; 4; 5; 7; 8g. The corresponding partialstatement is obtained by omitting all statements from the program which do not containexpressions in this set, i.e., both assignments to sum and both write statements. The resultis exactly the same as the slice computed by Weiser's algorithm (see Section 3.1.1).3.1.3 Dependence Graph Based ApproachesOttenstein and Ottenstein were the �rst of many to de�ne slicing as a reachability prob-lem in a dependence graph representation of a program [69]. They use the ProgramDependence Graph (PDG) [27, 58] for static slicing of single-procedure programs. Thestatements and expressions of a program constitute the vertices of a PDG, and edges cor-respond to data dependences and control dependences between statements (see Section 2).The key issue is that the partial ordering of the vertices induced by the dependence edges4Bergeretti and Carr�e do not de�ne information-ow relations for I/O statements. For the purposes ofthis example, it is assumed that the statement read(n) can be treated as an assignment n := SomeCon-stant, and that the statements write(sum) and write(product) should be treated as empty statements.10

www.manaraa.com

while (i <= n)read(n) i := 1 sum := 0 product := 1

Entry

write(sum) write(product)

sum := sum+i product :=
product*i

i := i + 1

Figure 6: PDG of the program in Figure 1 (a).must be obeyed so as to preserve the semantics of the program.In the PDGs of Horwitz et al., a distinction is made between loop-carried and loop-independent ow dependences, and there is an additional type of data dependence edgesnamed def-order dependence edges [40, 41, 42, 44]. Horwitz et al. argue that their PDGvariant is adequate: if two programs have isomorphic PDGS, they are strongly equivalent.This means that, when started with the same input state, they either compute the samevalues for all variables, or they both diverge. It is argued that the PDG variant of [40]is minimal in the sense that removing any of the dependence edges, or disregarding thedistinction between loop-carried and loop-independent ow edges would result in inequiv-alent programs having isomorphic PDGs. Nevertheless, for the computation of programslices, only ow dependences and control dependences are necessary. We will thereforeonly consider these dependences in the sequel.In all dependence graph based approaches, the slicing criterion is identi�ed with avertex v in the PDG. In Weiser's terminology, this corresponds to a criterion (n; V) wheren is the CFG node corresponding to v, and V the set of all variables de�ned or usedat v. Consequently, slicing criteria of PDG-based slicing methods are less general thanthose of methods based on dataow equations or information-ow relations. However,in Section 3.6.2, we will discuss how more precise slicing criteria can be `simulated' byPDG-based slicing methods. For single-procedure programs, the slice w.r.t. v consists ofall vertices from which v is reachable. The related parts of the source text of the programcan be found by maintaining a mapping between vertices of the PDG and the source textduring the construction of the PDG.The PDG variant of [69] shows considerably more detail than that of [44]. In particular,there is a vertex for each (sub)expression in the program, and �le descriptors appearexplicitly as well. As a result, read statements involving irrelevant variables are not`sliced away', and slices will execute correctly with the full input of the original program.As an example, Figure 6 shows the PDG of the program of Figure 1 (a). In this�gure, the PDG variant of [44] is used. Thick edges represent control dependences5 and5We omit the usual labeling of control dependence edges, as this is irrelevant for the present discussion.Furthermore, we will omit loop-carried ow dependence edges from a vertex to itself, as such edges areirrelevant for the computation of slices. 11

www.manaraa.com

program Example;begina := 17;b := 18;P(a, b, c, d);write(d)endprocedure P(v, w, x, y);x := v;y := wend
program Example;begina := 17;b := 18;P(a, b, c, d);endprocedure P(v, w, x, y);;y := wend

program Example;begin ;b := 18;P(a, b, c, d);write(d)endprocedure P(v, w, x, y);;y := wend(a) (b) (c)Figure 7: (a) Example program. (b) Weiser's slice. (a) HRB slice.thin edges represent ow dependences. Shading is used to indicate the vertices in the slicew.r.t. write(product).3.2 Interprocedural Static Slicing3.2.1 Dataow EquationsWeiser describes a two-step approach for computing interprocedural static slices in[85, 86]. First, a slice is computed for the procedure P which contains the original slicingcriterion. The e�ect of a procedure call on the set of relevant variables is approximatedusing interprocedural summary information [13]. For a procedure P , this informationconsists of a set Mod(P) of variables that may be modi�ed by P , and a set Use(P) ofvariables that may be used by P , taking into account any procedures called by P . Acall to P is treated as though it de�nes all variables in Mod(P) and uses all variables inUse(P), where actual parameters are substituted for formal parameters [86]. The fact thatWeiser's algorithm does not take into account which output parameters are dependent onwhich input parameters is a cause of imprecision. Figure 7 (a) shows an example programthat manifests this problem. The interprocedural slicing algorithm of [85] will computethe slice shown in Figure 7 (b). This slice contains the statement a := 17 due to thespurious dependence between variable a before the call, and variable d after the call. TheHorwitz-Reps-Binkley algorithm that will be discussed in Section 3.2.3 will compute themore accurate slice shown in Figure 7 (c).In the second step of Weiser's algorithm for interprocedural slicing, new criteria aregenerated for (i) procedures Q called by P , and (ii) procedures R that call P . The twosteps are repeated until no new criteria occur. The new criteria of (i) consist of all pairs(nQ; VQ) where nQ is the last statement of Q and VQ is the set of relevant variables in Pwhich is in the scope of Q (formals are substituted for actuals). The new criteria of (ii)consist of all pairs (NR; VR) such that NR is a call to P in R, and VR is the set of relevantvariables at the �rst statement of P which is in the scope of R (actuals are substitutedfor formals). The generation of new criteria is formalized by way of functions Up(S) andDown(S) which map a set S of slicing criteria in a procedure P to a set of criteria inprocedures that call P , and a set of criteria in procedures called by P , respectively. Theclosure (Up[Down)�(fC g) contains all criteria necessary to compute an interproceduralslice, given an initial criterion C. Worst-case assumptions have to be made when a program12

www.manaraa.com

program Example;begin(1) read(n);(2) i := 1;(3) sum := 0;(4) product := 1;(5) while i <= n dobegin(6) Add(sum, i);(7) Multiply(product, i);(8) Add(i, 1)end;(9) write(sum);(10) write(product)end

procedure Add(a; b);begin(11) a := a + bendprocedure Multiply(c; d);begin(12) j := 1;(13) k := 0;(14) while j <= d dobegin(15) Add(k, c);(16) Add(j, 1);end;(17) c := kendFigure 8: Example of a multi-procedure program.calls external procedures, and the source-code is unavailable.For example, assume that a slice is to be computed w.r.t. the �nal value of productin the program of Figure 8. Slicing will begin with the initial criterion (10; product).The �rst step of Weiser's algorithm will include all lines of the main program exceptline 3 and 6. In particular, the procedure calls Multiply(product, i) and Add(i, 1)are included in the slice, because: (i) the variables product and i are deemed relevant atthose points, and (ii) using interprocedural data ow analysis it can be determined thatMod(Add) = f a g, Use(Add) = f a; b g, Mod(Multiply) = f c g, and Use(Multiply) =f c; dg. As the initial criterion is in the main program, we have Up(f (10; product)g) = ;;Down(f (10; product) g) contains the criteria (11; f a g) and (17; f c; d g). The resultof slicing procedure Add with criterion (11; f a g) and procedure Multiply with criterion(17; f c; d g) will be the inclusion of these procedures in their entirety. Note that the callsto Add at lines 15 and 16 causes the generation of a new criterion (11; f a; b g) and thusre-slicing of procedure Add.Horwitz, Reps, and Binkley report in [44] that Weiser's algorithm for interproceduralslicing is unnecessarily inaccurate, because of what they refer to as the `calling context'problem. In a nutshell, the problem is that when the computation `descends' into aprocedure Q that is called from a procedure P , it will `ascend' to all procedures thatcall Q, not only P . This corresponds to execution paths which enter Q from P and exitQ to a di�erent procedure P 0. These execution paths are infeasible; taking them intoconsideration results in inaccurate slices. The example of Figure 8 exhibits the `callingcontext' problem. Since line (11) is in the slice, new criteria are generated for all calls toAdd. These calls include the (already included) calls at lines 8, 15, and 16, but also thecall Add(sum, i) at line 6. The new criterion (6; f sum; i g) that is generated will causethe inclusion of lines 6 and 3 in the slice. Consequently, the slice consists of the entireprogram.We conjecture that the calling context problem of Weiser's algorithm can be �xedby observing that the criteria in the Up sets are only needed to include procedures that
13

www.manaraa.com

program Main;� � �while (� � �) doP(x1, x2, � � �, xn);z := x1;x2 := x1;x3 := x2;� � �xn := x(n�1)end;write(z)end
procedure P(y1, y2, � � �, yn);beginwrite(y1);write(y2);� � �write(yn)end

Figure 9: Example program where procedure P is sliced n times by Weiser's algorithm.(transitively) call the procedure containing the initial criterion6. Once this is done, onlyDown sets need to be computed. Reps suggested that this essentially corresponds to thetwo passes of the Horwitz-Reps-Binkley algorithm (see Section 3.2.3) if all Up sets arecomputed before determining any Down sets.The computation of the Up and Down sets requires that the sets of relevant variablesare known at all call sites. In other words, the computation of these sets involves slicing ofprocedures. In the course of doing this, new variables may become relevant at previouslyencountered call sites, and new call sites may be encountered. This is illustrated by theprogram shown in Figure 9. In the subsequent discussion, L denotes the line-numberof statement write(z) and M the line-number of the last statement in procedure P.Computing the slice w.r.t. criterion (L; f z g) requires n iterations of the body of thewhile loop. During the ith iteration, variables x1; � � � ; xi will be relevant at the call site,causing the inclusion of criterion (M; f y1; � � � ; yi g) in Down(Main). If no precaution istaken to combine the criteria in Down(Main), procedure P will be sliced n times.Hwang, Du, and Chou propose an iterative solution for interprocedural static slicingbased on replacing recursive calls by instances of the procedure body in [45]. The slice isrecomputed in each iteration until a �xed point is found, i.e., no new statements are addedto a slice. This approach does not su�er from the calling context problem because expan-sion of recursive calls does not lead to considering infeasible execution paths. However,Reps has shown recently that for a certain family P k of recursive programs, this algorithmtakes time O(2k), i.e., exponential in the length of the program [72, 74]. An example ofsuch a program is shown in Figure 10 (a). Figure 10 (b) shows the exponentially longpath that is e�ectively traversed by the Hwang-Du-Chou algorithm.3.2.2 Information-ow RelationsIn [16], Bergeretti and Carr�e explain how the e�ect of procedure calls can be approximated.Exact dependences between input and output parameters are determined by slicing thecalled procedure with respect to each output parameter (i.e., computation of the � relationfor the procedure). Then, each procedure call is replaced by a set of assignments, whereeach output parameter is assigned a �ctitious expression that contains the input parame-6A similar observation was made by Jiang et al. in [47]. However, they do not explain that this approachonly works when a call to procedure p is treated as a multiple assignment Mod(p) := Use(p).14

www.manaraa.com

program P 3(x1; x2; x3);begint := 0;P 3(x2; x3; t);P 3(x2; x3; t);x1 := x1 + 1end;
P

P

P P

P
0

P P

P
0

0

P

P P

P
0

P P

P
0

0

(a) (b)Figure 10: (a) Example program. (b) Exponentially long path traversed by the Hwang-Du-Choualgorithm for interprocedural static slicing.ters it depends upon. As only feasible execution paths are considered, this approach doesnot su�er from the calling context problem. A call to a side-e�ect free function can bemodeled by replacing it with a �ctitious expression containing all actual parameters. Notethat the computed slices are not truly interprocedural since no attempt is done to sliceprocedures other than the main program.For the example program of Figure 8, the slice w.r.t. the �nal value of product wouldinclude all statements except sum := 0, Add(sum,i), and write(sum).3.2.3 Dependence GraphsHorwitz, Reps, and Binkley introduce the notion of a System Dependence Graph (SDG)for slicing of multi-procedure programs [44]. Parameter passing by value-result is modeledas follows: (i) the calling procedure copies its actual parameters to temporary variablesbefore the call, (ii) the formal parameters of the called procedure are initialized usingthe corresponding temporary variables, (iii) before returning, the called procedure copiesthe �nal values of the formal parameters to the temporary variables, and (iv) after re-turning, the calling procedure updates the actual parameters by copying the values of thecorresponding temporary variables.An SDG contains a program dependence graph for the main program, and a proce-dure dependence graph for each procedure. There are several types of vertices and edgesin SDGs which do not occur in PDGs. For each call statement, there is a call-site vertexin the SDG as well as actual-in and actual-out vertices which model the copying of ac-tual parameters to/from temporary variables. Each procedure dependence graph has anentry vertex, and formal-in and formal-out vertices to model copying of formal parame-ters to/from temporary variables. Actual-in and actual-out vertices are control dependenton the call-site vertex; formal-in and formal-out vertices are control dependent on theprocedure's entry vertex. In addition to these intraprocedural dependence edges, an SDGcontains the following interprocedural dependence edges: (i) a control dependence edge be-tween a call-site vertex and the entry vertex of the corresponding procedure dependencegraph, (ii) a parameter-in edge between corresponding actual-in and formal-in vertices,(iii) a parameter-out edge between corresponding formal-out and actual-out vertices, and(iv) edges which represent transitive interprocedural data dependences. These transitivedependences are computed by constructing an attribute grammar based on the call graphof the system, and serve to circumvent the calling context problem. This is accomplished15

www.manaraa.com

while (j <= d)

Enter Example

read(n) i := 1 sum := 0 product := 1 write(sum) write(product)

Add(sum,i)

a_in := sum b_in := i sum := a_out

Multiply(product,i)

c_in := product d_in := i product := c_out

Add(i,1)

a_in := i b_in := 1 i:= a_out

Enter Multiply

c_out := c

c := kk := 0j := 1

d := d_inc := c_in

j := a_outb_in := 1

Add(j, 1)

a_in := j

Add(k, c)

k := a_outb_in := ca_in := k

Enter Add

a_out := a

a := a + b

b := b_ina := a_in

while (i <= n)

Figure 11: SDG of the program in Figure 8.by traversing the graph in two phases. Suppose that slicing starts at vertex s. The �rstphase determines all vertices from which s can be reached without descending into proce-dure calls. The transitive interprocedural dependence edges guarantee that calls can beside-stepped, without descending into them. In the second phase, the algorithm descendsinto all previously side-stepped calls and determines the remaining vertices in the slice.Using interprocedural data ow analysis [11], the sets of variables which can be ref-erenced or modi�ed by a procedure can be determined. This information can be used toeliminate actual-out and formal-out vertices for parameters that will never be modi�ed,resulting in more precise slices. The algorithm of [44] also works for call-by-referenceparameter passing7 provided that aliases are resolved. Two approaches are proposed:transformation of the original program into an equivalent alias-free program, or the useof a generalized ow dependence notion (as will be discussed in Section 3.4). The �rstapproach yields more precise slices, whereas the second is more e�cient.Figure 11 shows the SDG for the program of Figure 8 where interprocedural dataowanalysis is used to eliminate the vertices for the second parameters of the procedures Addand Multiply. In the �gure, thin solid arrows represent ow dependences, thick solid ar-7For a discussion of parameter passing mechanisms the reader is referred to [6], Section 7.5.16

www.manaraa.com

rows correspond to control dependences, thin dashed arrows are used for call, parameter-in,and parameter-out dependences, and thick dashed arrows represent transitive interproce-dural ow dependences. The vertices in the slice w.r.t. statement write(product) areshown shaded; light shading indicates the vertices identi�ed in the �rst phase of the algo-rithm, and dark shading indicates the vertices identi�ed in the second phase. Clearly, thestatements sum := 0, Add(sum, i), and write(sum) are not in the slice.Slices computed by the algorithm of [44] are not necessarily executable programs.Cases where only a subset of the vertices for actual and formal parameters are in the slice,correspond to procedures where some of the arguments are `sliced away'; for di�erentcalls to the procedure, di�erent arguments may be omitted. Horwitz et al. propose twomethods for transforming such a non-executable slice into an executable program. The�rst method consists of creating di�erent variants of a procedure in the slice, and has thedisadvantage that the slice is no longer a restriction of the original program. The secondsolution consists of extending the slice with all parameters that are present at some callto all calls which occur in the slice. In addition, all vertices on which the added verticesare dependent must be added to the slice as well. Clearly, this second approach has thedisadvantage of yielding larger slices.Finally, it is outlined how interprocedural slices can be computed from partial SDGs(corresponding to programs under development, or programs containing library calls) andhow, using the SDG, interprocedural forward slices can be computed in a way that is verysimilar to the previously described method for interprocedural (backward) slicing.Recently, Reps et al. proposed a new algorithm for computing the summary edges ofan SDG [74, 75], which is asymptotically more e�cient than the Horwitz-Reps-Binkley al-gorithm [44] (the time requirements of these algorithms will be discussed in Section 3.6.3).Input to the algorithm is an SDG where no summary edges have been added yet, i.e., acollection of procedure dependence graphs connected by call, parameter-in, and parameter-out edges. The algorithm uses a worklist to determine same-level realizable paths. Intu-itively, a same-level realizable path obeys the call-return structure of procedure calls, andit starts and ends at the same level (i.e., in the same procedure). Same-level realizablepaths between formal-in and formal-out vertices of a procedure P induce summary edgesbetween the corresponding actual-in and actual-out vertices for any call to P . The algo-rithm starts by asserting that a same-level realizable path of length zero exists from anyformal-out vertex to itself. A worklist is used to select a path, and extend it by addingan edge to its beginning. In [75], a demand-version of the algorithm is presented, whichincrementally determines the summary edges of an SDG.In [60], Lakhotia presents an algorithm for computing interprocedural slices that is alsobased on SDGs. This algorithm computes slices that are identical to the slices computedby the algorithm in [44]. Associated with every SDG vertex v is a three-valued tag; possiblevalues for this tag are: \?" indicating that v has not been visited, \>" indicating that vhas been visited, and all vertices from which v can be reached should be visited, and \�"indicating that v has been visited, and some of the vertices from which v can be reachedshould be visited. More precisely, an edge from an entry vertex to a call vertex shouldonly be traversed if the call vertex is labeled >. A worklist algorithm is used to visit allvertices labeled > before visiting any vertex labeled �. When this process ends, verticeslabeled either > or � are in the slice. Lakhotia's algorithm traverses performs a single passthrough the SDG. However, unlike the algorithm of [44], the value of a tag may changetwice. Therefore it is unclear if Lakhotia's algorithm is really an improvement over the17

www.manaraa.com

Horwitz-Reps-Binkley two-pass traversal algorithm.3.3 Static Slicing in the Presence of Unstructured Control Flow3.3.1 Dataow EquationsLyle reports in [64] that (his version of) Weiser's algorithm for static slicing yields in-correct slices in the presence of unstructured control ow: the behavior of the slice isnot necessarily a projection of the behavior of the program. He presents a conservativesolution for dealing with goto statements consisting of including any goto which has anon-empty set of active variables associated with it.Gallagher [31] and Gallagher and Lyle [32] also use a variation of Weiser's method. Agoto statement is included in the slice if it jumps to a label of an included statement8.Agrawal shows in [2] that this algorithm does not produce correct slices in all cases.Jiang et al. extend Weiser's slicing method to C programs with arbitrary control ow[47]. They introduce a number of additional rules to `collect' the unstructured control owstatements such as goto, break, and continue which are part of the slice. Unfortunately,no formal justi�cation is given for the treatment of unstructured control ow constructsin [47]. Agrawal shows in [2] that this algorithm may also produce incorrect slices.3.3.2 Dependence GraphsBall and Horwitz [8, 9] and Choi and Ferrante [21] discovered independently that con-ventional PDG-based slicing algorithms produce incorrect results in the presence of un-structured control ow: slices may compute values at the criterion that di�er from whatthe original program does. These problems are due to the fact that the algorithms donot determine correctly when unconditional jumps such as break, goto, and continuestatements are required in a slice.As an example, Figure 12 (a) shows a variant of our example program which usesa goto statement. Figure 12 (b) shows the PDG for this program. The vertices whichhave a transitive dependence on statement write(product) are highlighted. Figure 12(c) shows a textual representation of the program thus obtained. Clearly, this `slice' isincorrect because it does not contain the goto statement, causing non-termination. Infact, the previously described PDG-based algorithms will only include a goto if it is theslicing criterion itself, because no statement is either data or control dependent on a goto.The solution of [8, 9] and the �rst solution presented in [21] are remarkably similar:unconditional jumps are regarded as pseudo-predicate vertices where the `true' branchconsists of the statement that is being jumped to, and the `false' branch of the textuallynext statement. Correspondingly, there are two outgoing edges in the augmented controlow graph (ACFG). Only one of these edges can actually be traversed during execution; theother outgoing edge is `non-executable'. The notion of (data) ow dependence is alteredin order to ignore dependences caused by non-executable edges. Augmented PDGs areconstructed using the ACFG instead of the CFG, and slicing is de�ned in the usual way8Actually, this is a slight simpli�cation. Each basic block is partitioned into labeled blocks; a labeledblock is a subsequence of the statements in a basic block starting with a labeled statement, and containingno other labeled statements. A goto is included in the slice if it jumps to a label for which there is someincluded statement in its block. 18

www.manaraa.com

read(n);i := 1;sum := 0;product := 1;while true dobeginif (i > n) thengoto L;sum := sum + i;product := product * i;i := i + 1end;L: write(sum);write(product)
read(n);i := 1;product := 1;while true dobeginif (i > n) then;product := product * i;i := i + 1end;write(product)

read(n);i := 1;product := 1;while true dobeginif (i > n) thengoto L;product := product * i;i := i + 1end;L: write(product)(a) (c) (e)
read(n) i := 1

Entry

sum := 0 product := 1 while(true) write(product)write(sum)

i := i +1product:=
product*isum+i

sum :=if (i > n)

goto L

(b)
goto L

Entry

write(product)write(sum)while(true)product := 1sum := 0i := 1read(n)

if (i > n)
sum+i

sum := product:=
product*i

i := i +1

(d)Figure 12: (a) Program with unstructured control ow, (b) PDG for program of (a), (c)incorrect slice, (d) Augmented PDG for program of (a), (e) correct slice.19

www.manaraa.com

as a graph reachability problem. Labels pertaining to statements excluded from the sliceare moved to the closest post-dominating statement that occurs in the slice.The main di�erence between the approach by Ball and Horwitz and the �rst approachof Choi and Ferrante is that the latter use a slightly more limited example language: con-ditional and unconditional goto's are present, but no structured control ow constructs.Although Choi and Ferrante argue that these constructs can be transformed into condi-tional and unconditional goto's, Ball and Horwitz show that, for certain cases, this resultsin overly large slices. Both groups present a formal proof that their algorithms computecorrect slices.Figure 12 (d) shows the augmented PDG for the program of Figure 12 (a); verticesfrom which the vertex labeled write(product) can be reached are indicated by shading.The (correct) slice corresponding to these vertices is shown in Figure 12 (e).Choi and Ferrante distinguish two disadvantages of the slicing approach based onaugmented PDGs. First, APDGs require more space than conventional PDGs, and theirconstruction takes more time. Second, non-executable control dependence edges give riseto spurious dependences in some cases. In their second approach, Choi and Ferrante utilizethe `classical' PDG. As a �rst approximation, the standard algorithm for computing slicesis used, which by itself produces incorrect results in the presence of unstructured controlow. The basic idea is that for each statement that is not in the slice, a new goto toits immediate post-dominator is added. In a separate phase, redundant cascaded gotostatements are removed. The second approach has the advantage of computing smallerslices than the �rst. A disadvantage, however, is that slices may include goto statementswhich do not occur in the original program.Yet another PDG-based method for slicing programs with unstructured control owwas recently proposed by Agrawal in [2]. Unlike the methods in [8, 9, 21], Agrawal usesthe standard PDG. He observes that a conditional jump statement of the form if P thengoto Lmust be included in the slice if predicate P is in the slice because another statementin the slice is control dependent on it. The terminology `conventional slicing algorithm' isadopted to refer to the standard PDG-based slicing method, with the above extension toconditional jump statements.The main observation in [2] is that an unconditional jump statement J should be in-cluded in the slice if and only if the immediate postdominator of J in the slice di�ersfrom the immediate lexical successor of J in the slice. Here, a statement S0 is a lexicalsuccessor of a statement S if S textually precedes S0 in the program9. The statementson which the newly added statement is transitively dependent must also be added to theslice. The motivation for this approach can be understood by considering a sequence ofstatements S1;S2;S3 where S1 and S3 are in the slice, and where S2 contains an uncon-ditional jump statement to a statement that does not have S3 as its lexical successor.Suppose that S2 were not included in the slice. Then the ow of control in the slice wouldpass unconditionally from S1 to S3, though in the original program this need not alwaysbe the case, because the jump might transfer the control elsewhere. Therefore S2 mustbe included, together with all statements it depends upon. Agrawal's algorithm traversesthe postdominator tree of a program in pre-order, and considers jump statements for in-clusion in this order. The algorithm iterates until no jump statements can be added; this9As Agrawal observes, this notion is equivalent to the non-executable edges in the augmented controlow graphs used in [8, 9, 21]. 20

www.manaraa.com

is necessary because adding a jump (and the statements it depend upon) may change thelexical successors and postdominators in the slice of other jump statements, which maytherefore need to be included as well. Although no proof is stated, Agrawal claims that hisalgorithm computes correct slices, and that it computes slices that are identical to thosecomputed by the algorithm in [8, 9].The algorithm in [2] may be simpli�ed signi�cantly if the only type of jump that occursin a program is a structured jump, i.e., a jump to a lexical successor. C break, continue,and return statements are all structured jumps. First, only a single traversal of the post-dominator tree is required. Second, jump statements have to be added only if they arecontrol dependent on a predicate that is in the slice. In this case, the statements they aredependent upon are already included in the slice. For programs with structured jumps,the algorithm can be further simpli�ed to a conservative algorithm by including in theslice all jump statements that are control dependent on a predicate that is in the slice.Agrawal's algorithm will include the goto statement of the example program of Fig-ure 12 (a) because it is control dependent on the (included) predicate of the if statement.3.4 Static Slicing in the Presence of Composite Datatypes/PointersLyle proposes a conservative solution to the problem of static slicing in the presence ofarrays [64]. Essentially, any update to an element of an array is regarded as an updateand a reference of the entire array.The PDG variant of Ottenstein and Ottenstein [69] contains a vertex for each sub-expression; special select and update operators serve to access elements of an array.In the presence of pointers (and procedures), situations may occur where two or morevariables refer to the same memory location; this phenomenon is commonly called aliasing.Algorithms for determining potential aliases can be found in [20, 61]. Slicing in thepresence of aliasing requires a generalization of the notion of data dependence to takepotential aliases into account. This can be done roughly as follows: a statement s ispotentially data dependent on a statement s0 if: (i) s de�nes a variable X 0, (ii) s0 uses avariable X, (iii) X and X 0 are potential aliases, and (iv) there exists a path from s tos0 in the CFG where X is not necessarily de�ned. Such paths may contain de�nitions topotential aliases of X. This altered notion of data dependence can in principle be used inany static slicing algorithm.A slightly di�erent approach is pursued by Horwitz, Pfei�er, and Reps in [38]. Insteadof de�ning data dependence in terms of potential de�nitions and uses of variables, theyde�ned this notion in terms of potential de�nitions and uses of abstract memory locations.The PDG-based static slicing algorithm proposed by Agrawal, DeMillo and Spa�ord [3]implements a similar idea to deal with both composite variables and pointers.Reaching de�nitions for a scalar variable v at node n in the owgraph are determinedby �nding all paths from nodes corresponding to a de�nition of v to n which do not containother de�nitions of v. When composite datatypes and pointers are considered, de�nitionsinvolve l-valued expressions rather than variables. An l-valued expression is any expressionwhich may occur as the left-hand side of an assignment. For composite datatypes andpointers, a new de�nition of reaching de�nitions is presented which is based on the layoutof memory locations occupied by l-valued expressions rather than on names of variables.Memory locations are regarded as abstract quantities (e.g., the array a corresponds to`locations' a[1], a[2],� � �). Whereas a de�nition for a scalar variable either does or does not21

www.manaraa.com

(1) p = &x;(2) *p = 2;(3) q = p;(4) write(*q) Node # Def Ref R0(4;f q; (1)q g)1 f p g f (�1)x g ;2 f (1)p g f p g f p; (1)q g3 f q g f p g f p; (1)q g4 ; f q; (1)q g f q; (1)q g (1) p = &x;(2) ;(3) q = p;(4)(a) (b) (c)Figure 13: (a) Example program. (b) De�ned variables, used variables, and relevant variablesfor this program. (c) Incorrect slice.reach a use, the situation becomes more complex when composite datatypes and pointersare allowed. For a def-expression e1 and a use-expression e2, the following situations mayoccur:� Complete IntersectionThe memory locations corresponding to e1 are a superset of the memory locationscorresponding to e2. An example is the case where e1 de�nes the whole of record b,and e2 is a use of b:f .� Maybe IntersectionIt cannot be determined statically whether or not the memory locations of a e1coincide with those of e2. This situation occurs when e1 is an assignment to arrayelement a[i] and e2 is a use of array element a[j]. Pointer dereferencing may alsogive rise to Maybe intersections.� Partial IntersectionThe memory locations of e1 are a subset of the memory locations of e2. This occursfor example when array a record is used at e2, and array element a[5] is de�ned ate1.Given these concepts, an extended reaching de�nition function is de�ned which traversesthe owgraph until it �nds Complete Intersections, makes worst-case assumptions in thecase of Maybe Intersections, and continues the search for the array or record parts whichhave not been de�ned yet in the case of Partial Intersections.Jiang, Zhou and Robson present an algorithm in [47] for slicing C programs withpointers and arrays. Weihl's notion of dummy variables is used for addresses that maybe pointed to [81]; Unfortunately, the approach by Jiang et al. appears to be awed.Figure 13 (a) shows an example program, Figure 13 (b) the Def, Ref, and R0C sets foreach statement, and Figure 13 (c) the incorrect slice computed by the algorithm of [47]for criterion C = (4; f q; (1)q g). In Figure 13 (b), the dummy variables (1)p and (1)qdenote the values pointed to by p and q, respectively, and (�1)x denotes the address of x.The second statement is incorrectly omitted because it does not de�ne any variable thatis relevant at statement 3.3.5 Static Slicing of Distributed ProgramsIn [19], Cheng considers static slicing of concurrent programs using dependence graphs.He generalizes the notions of a CFG and a PDG to a nondeterministic parallel control ow22

www.manaraa.com

net , and a program dependence net (PDN), respectively. In addition to edges for data de-pendence and control dependence, PDNs may also contain edges for selection dependences,synchronization dependences, and communication dependences. Selection dependence issimilar to control dependence but involves nondeterministic selection statements, such asthe ALT statement of Occam-2. Synchronization dependence reects the fact that thestart or termination of the execution of a statement depends on the start or terminationof the execution of another statement. Communication dependence corresponds to situa-tions where a value computed at one point in the program inuences the value computedat another point through interprocess communication. Static slices are computed by solv-ing a reachability problem in a PDN. Unfortunately, Cheng does not clearly state thesemantics of synchronization and communication dependence, nor does he state or proveany property of the slices computed by his algorithm.An interesting point is that Cheng uses a notion of weak control dependence [70] for theconstruction of PDNs. This notion subsumes the standard notion of control dependence;the di�erence is that weak control dependences exist between the control predicate of aloop, and the statements that follows it. For example, the statements on lines 9 and 10of the program of Figure 1 (a) are weakly control dependent (but not strongly controldependent) on the control predicate of the while statement on line 5.3.6 Comparison of Methods for Static Slicing3.6.1 OverviewIn this section, we compare and classify the static slicing methods that were presentedearlier. The section is organized as follows: Section 3.6.1 summarizes the problems that areaddressed in the literature. Sections 3.6.2 and 3.6.3 compare the accuracy and e�ciencyof slicing methods that address the same problem, respectively. Finally, in Section 3.6.4we discuss the possibilities for combining algorithms that deal with di�erent problems.Table 2 provides an overview of the most signi�cant slicing algorithms that can befound in the literature. For each paper, the table lists the computation method used andindicates: (i) whether or not interprocedural slices can be computed, (ii) the control owconstructs under consideration, (iii) the datatypes under consideration, and (iv) whetheror not interprocess communication is considered. It is important to realize that the entriesof Table 2 only indicate the problems that have been addressed; the table does not indicatethe `quality' of the solutions (with the exception that incorrect solutions are indicated byfootnotes). Moreover, the table also does not indicate which algorithms may be combined.For example, the interprocedural slicing algorithm of [44] could in principle be combinedwith any of the dependence graph based slicing methods for dealing with arbitrary controlow [2, 9, 21]. Possibilities for such combinations are investigated in Section 3.6.4.In [48], Kamkar distinguishes between methods for computing slices that are executableprograms, and those for computing slices that consist of a set of `relevant' statements andcontrol predicates. We agree with the observation by Horwitz et al. in [44], that forstatic slicing of single-procedure programs this is merely a matter of presentation. As weremarked in Section 3.2.3, for static slicing of multi-procedure programs, the distinctionbetween executable and non-executable slices is relevant. However, since these problemsare strongly related (the solution to the former problem can be used to obtain a solutionto the latter problem), we believe the distinction between executable and non-executable23

www.manaraa.com

Computation Interprocedural Control Data InterprocessMethoda Solution Flowb Typesc CommunicationWeiser [63, 85] D yes S S noLyle [64] D no A S, A noGallagher, Lyle [31, 32] D no Ad S noJiang et al. [47] D yes Ad S, A, Pe noHausler [36] F no S S noBergeretti, Carr�e [16] I yesf S S noOttenstein [69] G no S S, A noHorwitz et al. [41, 42, 76] G no S S noHorwitz et al. [44] G yes S S noReps et al. [75] G yes S S noLakhotia [60] G yes S S noAgrawal et al. [3] G no S S, A, P noBall, Horwitz [8, 9] G no A S noChoi, Ferrante [21] G no A S noAgrawal [2] G no A S noCheng [19] G no S S yesaD = dataow equations, F = functional/denotational semantics, I = information-ow relations, G =reachability in a dependence graph.bS = structured, A = arbitrary.cS = scalar variables, A = arrays/records, P = pointers.dSolution incorrect (see [2]).eSolution incorrect (see Section 3.4).fNon-recursive procedures only.Table 2: Overview of static slicing methods.static slices can be dismissed.3.6.2 AccuracyThe following issues complicate the comparison of the static slicing methods:� In its original formulation, Weiser's slicing algorithm [85] considers each line of sourcecode as a unit; this may result in imprecise slices if a line contains more than onestatement. Algorithms based on information-ow relations [16] and PDGs [69] donot su�er from this problem because each statement is a distinct unit.In subsequent discussions, we will feel free to ignore this fact because one can easilyimagine a reformulation of Weiser's algorithm that is based on labeled expressions(as in [16]) instead of line-numbers.� For slicing methods based on dataow equations and information-ow relations, aslicing criterion consists of a pair (s; V), where s is a statement and V an arbitraryset of variables. In contrast, for PDG-based slicing methods a criterion e�ectivelycorresponds to a pair (s;Vars(s)), where s is a statement and Vars(s) the set ofall variables de�ned or used at s.However, a PDG-based slicing method can compute a slice with respect to a criterion(s; V) for arbitrary V by performing the following three steps. First, the CFG noden corresponding to PDG vertex s is determined. Second, the set of CFG nodes N24

www.manaraa.com

corresponding to all reaching de�nitions for variables in V at node n are determined.Third, the set of PDG vertices S corresponding to the set of CFG nodes N isdetermined; the desired slice consists of all vertices from which a vertex in S can bereached.Having dealt with these issues, we can state our conclusions concerning the accuracy ofstatic slicing methods:basic algorithmsFor intraprocedural static slicing, the accuracy of methods based on dataow equa-tions [85] (see Section 3.1.1) information-ow relations [16] (see Section 3.1.2), andPDGs [69] (see Section 3.1.3) is essentially the same, although the presentation ofthe computed slices di�ers: Weiser de�nes his slice to be an executable program,whereas in the other two methods, slices are de�ned as a subset of statements of theoriginal program.proceduresWeiser's interprocedural static slicing algorithm [85] is inaccurate for two reasons,which can be summarized as follows. First, the interprocedural summary informa-tion used to approximate the e�ect of a procedure call establishes relations betweenthe set of all input parameters, and the set of all output parameters; by contrast, theapproaches of [16, 44, 45, 74] determine for each output parameter the input param-eters it depends upon. Second, the algorithm fails to take the call-return structureof interprocedural execution paths into account. These problems are addressed indetail in Section 3.2.1.The algorithm by Bergeretti and Carr�e [16] does not compute truly interproceduralslices because only the main program is being sliced. Moreover, the it is not capableof handling recursive programs. Bergeretti-Carr�e slices are accurate in the sensethat: (i) exact dependences between input and output parameters are used, and (ii)the calling-context problem does not occur.The solutions of [16, 45, 44, 74] compute accurate interprocedural static slices, andare capable of handling recursive programs (see Sections 3.2.2 and 3.2.3).arbitrary control owLyle's method for computing static slices in the presence of arbitrary control ow isvery conservative (see Section 3.3.1). Agrawal has shown in [2] that the solutionsproposed by Gallagher and Lyle [31, 32] and by Jiang et al. are incorrect. Precisesolutions for static slicing in the presence of arbitrary control ow have been proposedby Ball and Horwitz [8, 9], Choi and Ferrante [21], and Agrawal [2] (see Section 3.3.2).We conjecture that these three approaches are equally accurate.composite variables and pointersLyle has presented a very conservative algorithm for static slicing in the presence ofarrays (see Section 3.4). As we discussed in Section 3.4, the approach by Jiang et al.is incorrect. Agrawal et al. propose an algorithm for static slicing in the presence ofarrays and pointers (see Section 3.4) that is more accurate than Lyle's algorithm.25

www.manaraa.com

interprocess communicationThe only approach for static slicing of concurrent programs was proposed by Cheng(see Section 3.5).3.6.3 E�ciencyBelow, we will examine the e�ciency of the static slicing methods that were studied earlier:basic algorithmsWeiser's algorithm for intraprocedural static slicing based on dataowequations [85] can determine a slice in O(v � n� e) time10, where v is the numberof variables in the program, n the number of vertices in the CFG, and e the numberof edges in the CFG.Bergeretti and Carr�e report in [16] that the �S relation for a statement S can becomputed in O(v2 � n). From this relation, the slices for all variables at a givenstatement can be obtained.Construction of a PDG essentially involves computing all data dependences andcontrol dependences in a program. For structured programs, control dependencescan be determined in a syntax-directed fashion, in O(n). In the presence of arbitrarycontrol ow, the control dependences of a single-procedure program can be computedin O(e � n) time [24, 27]. Computing data dependences essentially corresponds todetermining the reaching de�nitions for each use. For scalar variables, this can beaccomplished in O(e� d), where d is the number of de�nitions in the program (see,e.g., [75]). From d � n it follows that a PDG can be constructed in O(e� n) time.One of the self-evident advantages of PDG-based slicing methods is that, once thePDG has been computed, slices can be extracted in linear time, O(V +E), where VandE are the number of vertices and edges in the slice, respectively. This is especiallyuseful if several slices of the same program are required. In the worst case, when theslice consists of the entire program, V and E are equal to the number of vertices andedges of the PDG, respectively. In certain cases, there can be a quadratic blowup inthe number of ow dependence edges of a PDG, e.g., E = O(V 2). We are not awareof any slicing algorithms that use more e�cient program representations such as theSSA form [7].procedures In the discussion below, Visible denotes the maximal number of parametersand variables that are visible in the scope of any procedure, and Params denotes themaximum number of formal-in vertices in any procedure dependence graph of theSDG. Moreover, TotalSites is the total number of call sites in the program; Np andEp denote the number of vertices and edges in the CFG of procedure p, and Sitespthe number of call sites in procedure p.10In [85], Weiser states a bound of O(n � e � log(e)). However, this is a bound on the number of\bit-vector" steps performed, where the length of each bit-vector is O(v). We have multiplied the costby O(v) to account for the cost of such bit-vector operations. The problem of determining relevantvariables is similar to that of determining possibly-uninitialized variables. The transformation techniqueof [75] can be employed to do this in O(v � e) time. At most n iterations have to be performed due tobranch statements with indirect relevance. Hence, an improved bound for Weiser's intraprocedural slicingalgorithm is O(v � n� e). 26

www.manaraa.com

Weiser does not state an estimate of the complexity of his interprocedural slicingalgorithm in [85]. However, one can observe that for an initial criterion C, theset of criteria in (Up [Down)*(C) contains at most O(Visible) criteria in eachprocedure p. An intraprocedural slice of procedure p takes time O(Visible�Np�Ep).Furthermore, computation of interprocedural summary information can be done inO(Globals�TotalSites) time [23]. Therefore, the following expression constitutes anupper bound for the time required to slice the entire program:O(Globals � TotalSites +Visible2 ��p(Sitesp �Np �Ep))The complexity of the approach by Bergeretti and Carr�e requires that each procedurebe sliced once. Each call site is replaced by at most Visible assignments. Therefore,the cost of slicing procedure p is O(Visible2 � (n+ Visible� Sitesp)), and the totalcost of computing an interprocedural slice is:O(Visible2 � �p(n+Visible� Sitesp))As was discussed in Section 3.2.1, the approach by Hwang, Du, and Chou mayrequire time exponential in the size of the program.Construction of the individual procedure dependence graphs of an SDG takes timeO(�p(Ep�Np)). The Horwitz-Reps-Binkley algorithm for computing summary edgestakes time:O(TotalSites �EPDG � Params + TotalSites � Sites2 � Params4)where Sites is the maximum number of call sites in any procedure, and EPDG isthe maximum number of control and data dependence edges in any procedure de-pendence graph. (for details, the reader is referred to [44, 74]). The Reps-Horwitz-Sagiv-Rosay approach for computing summary edges requiresO(P �EPDG � Params + TotalSites � Params3)time [74]. Here, P denotes the number of procedures in the program. Assumingthat the number of procedures P is usually much less than the number of procedurecalls TotalSites, both terms of the complexity measure of the Reps-Horwitz-Sagiv-Rosay approach are asymptotically smaller than those of the Horwitz-Reps-Binkleyalgorithm.Once an SDG has been constructed, a slice can be extracted from it (in two passes)in O(V + E), where V and E are the number of vertices and edges in the slice,respectively. In the worst case, V = V SDG and E = ESDG, where V SDG and ESDGare the number of vertices and edges in the SDG, respectively.arbitrary control ow Lyle's conservative algorithm for dealing with unstructuredcontrol ow is essentially the same as Weiser's algorithm [85]: a goto statementis included if it has a non-empty set of relevant variables. Therefore, the timerequirements of Lyle's algorithm are the same as those of Weiser's: O(v � n � e)time. 27

www.manaraa.com

Interprocedural Arbitrary Non-scalar InterprocessSlicing Control Flow Variables CommunicationD.-F. Eqs. Weiser [85, 63] Lyle [64] Lyle [64]I.-F. Rels. Bergeretti, Carr�e [16] { {PDG-based Horwitz et al. [44] Ball, Horwitz [8, 9] Agrawal et al.[3]a Cheng [19]Lakhotia [59] Choi, Ferrante [21]Reps et al. [75] Agrawal [2]aAlgorithms for computing potential data dependences in the presence of non-scalar variables andaliasing can be used. See Section 3.4.Table 3: Orthogonal problems of static slicing.No complexity estimates are stated in [2, 9, 21]. However, the di�erence betweenthese algorithms and the `standard' PDG-based slicing algorithm is very minor: in[9, 21] a slightly di�erent control dependence subgraph is used in conjunction withthe data dependence subgraph, and in [2] the standard PDG is used in conjunctionwith a lexical successor tree that can be constructed in linear time, O(n). Thereforeit is to be expected that the e�ciency of these algorithms is roughly equivalent tothat of the standard, PDG-based algorithm we discussed above.composite variables and pointers Lyle's approach for slicing in the presence of ar-rays [64] has the same complexity bound as Weiser's algorithm for slicing in thepresence of scalar variables, because the worst-case length of reaching de�nitionspaths remains the same.The cost of constructing PDGs of programs with composite variables and pointersaccording to the algorithm proposed by Agrawal et al. in [3] is the same as that ofconstructing PDGs of programs with scalar variables only. This is the case becausethe worst-case length of (potential) reaching de�nitions paths remains the same, anddetermining maybe intersections and partial intersections (see Section 3.4) can bedone in constant time.interprocess communication Cheng doesn't state any complexity estimate for deter-mining selection, synchronization, and communication dependence in [19]. The timerequired for extracting slices is O(V + E), where V and E denote the number ofvertices and edges in the PDN, respectively.It should be remarked here that more accurate static slices can be determined in thepresence of non-scalar variables if more advanced (but computationally expensive) datadependence analysis were performed (see, e.g., [66, 87]).3.6.4 Combining Static Slicing AlgorithmsTable 3 highlights `orthogonal' problems of static slicing: dealing with procedures, un-structured control ow, non-scalar variables, and interprocess communication. For eachcomputation method, the table shows which papers present a solution for these problems.In principle, solutions to di�erent problems could be combined if they appear in the samerow of Table 3 (i.e., if they apply to the same computation method).28

www.manaraa.com

11 read(n)22 i := 133 i <= n /* (1 <= 2) /*44 (i mod 2 = 0) /* (1 mod 2 = 0) /*65 x := 1876 i := i + 137 i <= n /* (2 <= 2) /*48 (i mod 2 = 0) /* (2 mod 2 = 0) /*59 x := 17710 i := i + 1311 i <= n /* (3 <= 2) /*812 write(x)
DU = f (11; 33); (11; 37); (11; 311);(22; 33); (22; 44); (22; 76);(76; 37); (76; 48); (76; 710);(59; 812); (710; 311) gTC = f (33; 44); (33; 65); (33; 76);(44; 65); (37; 48); (37; 59);(37; 710); (48; 59) gIR = f (33; 37); (33; 311); (37; 33);(37; 311); (311; 33); (311; 37);(44; 48); (48; 44); (76; 710);(710; 76) g(a) (b)Figure 14: (a) Trajectory for the example program of Figure 2 (a). (b) Dynamic Flow Conceptsfor this trajectory.4 Methods for Dynamic Slicing4.1 Basic Algorithms for Dynamic SlicingIn this section, we study basic algorithms for dynamic slicing of structured programswithout nonscalar variables, procedures, and interprocess communication.4.1.1 Dynamic Flow ConceptsKorel and Laski describe how dynamic slices can be computed in [56, 57]. They formalizethe execution history of a program as a trajectory consisting of a sequence of `occurrences'of statements and control predicates. Labels serve to distinguish between di�erent oc-currences of a statement in the execution history. As an example, Figure 14 shows thetrajectory for the program of Figure 2 (a) for input n = 2.A dynamic slicing criterion is speci�ed as a triple (x; Iq; V) where x denotes the inputof the program, statement occurrence Iq is the qth element of the trajectory, and V isa subset of the variables of the program11. A dynamic slice is de�ned as an executableprogram that is obtained from the original program by deleting zero or more statements.For input x, the same values for variables in V are computed at `corresponding' points inthe trajectories of the program and its slice. Two further requirements are imposed ondynamic slices: (i) the statement corresponding to criterion Iq occurs in the slice, and (ii)if a loop occurs in the slice, it is traversed the same number of times as in the originalprogram.In order to compute dynamic slices, Korel and Laski introduce three dynamic ow con-cepts which formalize the dependences between occurrences of statements in a trajectory.The De�nition-Use (DU) relation associates a use of a variable with its last de�nition.11Korel and Laski's de�nition of a dynamic slicing criterion is somewhat inconsistent. It assumes that atrajectory is available although the input x uniquely de�nes this. A self-contained and minimal de�nitionof a dynamic slicing criterion would consist of a triple (x; q; V) where q is the number of a statementoccurrence in the trajectory induced by input x. 29

www.manaraa.com

11 read(n)22 i := 133 i <= n44 (i mod 2 = 0)65 x := 1876 i := i + 137 i <= n88 write(x)
DU = f (11; 33); (11; 37);(22; 33); (22; 44);(22; 76); (65; 88);(76; 37) gTC = f (33; 44); (33; 65);(33; 76); (44; 65) gIR = f (33; 37); (37; 33) g(a) (b)read(n);i := 1;while (i <= n) dobeginif (i mod 2 = 0) thenx := 17else ;i := i + 1end;write(x)

read(n);i := 1;while (i <= n) dobeginif (i mod 2 = 0) thenx := 17else ;end;write(x)(c) (d)Figure 15: (a) Trajectory of the example program of Figure 2 (a). for input n = 1. (b)Dynamic ow concepts for this trajectory. (c) Dynamic slice for criterion (n = 1; 88; x). (d)Non-terminating slice obtained by ignoring the e�ect of the IR relation.Note that in a trajectory, this de�nition is uniquely de�ned. The Test-Control (TC)relation associates the most recent occurrence of a control predicate with the statementoccurrences in the trajectory that are control dependent upon it. This relation is de�nedin a syntax-directed manner, for structured program constructs only. Occurrences of thesame statement are related by the symmetric Identity (IR) relation. Figure 14 (b) showsthe dynamic ow concepts for the trajectory of Figure 14 (a).Dynamic slices are computed in an iterative way, by determining successive sets Si ofdirectly and indirectly relevant statements. For a slicing criterion (x; Iq; V) The initialapproximation S0 contains the last de�nitions of the variables in V in the trajectory, aswell as the test actions in the trajectory on which Iq is control dependent. ApproximationSi+1 is de�ned as follows: Si+1 = Si [Ai+1where Ai+1 consists of:Ai+1 = fXp j Xp 62 Si; (Xp; Y t) 2 (DU [TC [IR) for some Y t 2 Si; p < q gThe dynamic slice is easily obtained from the �xpoint SC of this process (as q is �nite,this always exists): any statement X for which an instance Xp occurs in SC will be in theslice. Furthermore, statement I corresponding to criterion Iq is added to the slice.30

www.manaraa.com

(1) read(n);(2) i := 1;(3) while (i <= n) dobegin(4) if (i mod 2 = 0) then(5) x := 17else(6) x := 18;(7) z := x;(8) i := i + 1end;(9) write(z)
11 read(n)22 i := 133 i <= n44 (i mod 2 = 0)65 x := 1876 z := x87 i := i + 138 i <= n49 (i mod 2 = 0)510 x := 17711 z := x812 i := i + 1313 i <= n914 write(z)(a) (b)Figure 16: (a) Example program. (b) Trajectory for input n = 2.As an example, we compute the dynamic slice for the trajectory of Figure 14 and thecriterion (n = 2; 812; f x g). Since the �nal statement is not control dependent on anyother statement, the initial approximation of the slice consists of the last de�nition of x:A0 = f59 g. Subsequent iterations will produce A1 = f37; 48 g, A2 = f76; 11; 33; 311; 44 g,and A3 = f 22; 710 g. From this, it follows that:SC = f 11; 22; 33; 44; 76; 37; 48; 59; 710; 311; 812 gThus, the dynamic slice with respect to criterion (n = 2; 812; fxg) includes every statementexcept statement 5, corresponding to statement 65 in the trajectory. This slice was shownearlier in Figure 2 (b).The role of the IR relation calls for some clari�cation. To this end, we consider thetrajectory of the example program of Figure 2 (a) for input n = 1, which is shown inFigure 15 (a). The dynamic ow concepts for this trajectory, and the slice with respectto criterion (n = 1; 88; f x g) are shown in Figure 15 (b) and (c), respectively. Note thatthe slice thus obtained is a terminating program. However, if we would compute the slicewithout taking the IR relation into account, the non-terminating program of Figure 15(d) would be obtained. The reason for this phenomenon (and thus for introducing the IRrelation) is that the DU and TC relations only traverse the trajectory in the backward di-rection. The purpose of the IR relation is to traverse the trajectory in both directions, andto include all statements and control predicates that are necessary to ensure terminationof loops in the slice. Unfortunately, no proof is provided that this is always su�cient.Unfortunately, traversing the IR relation in the `backward' direction causes inclusionof statements that are not necessary to preserve termination. For example, Figure 16(a) shows a slightly modi�ed version of the program of Figure 2 (a). Figure 16 (b)shows the trajectory for this program. From this trajectory, it follows that (76; 711) 2 IR,(65; 76) 2 DU, and (510; 711) 2 DU. Therefore, both statements (5) and (6) will beincluded in the slice, although statement (6) is neither needed to compute the �nal valueof z nor to preserve termination.It would be interesting to investigate if using a dynamic variation of Podgurski andClarke's notion of weak control dependence [70] instead of the IR relation would lead tomore accurate slices. 31

www.manaraa.com

�� = ;�� = ;�� = Id�v:=e = Vars(e)� f e g�v:=e = f (e; v) g�v:=e = (Vars(e)� f v g) [(Id� (v; v))�S1;S2 = �S1 [�S1 � �S2�S1;S2 = �S1 � �S2 [�S2�S1;S2 = �S1 � �S2�if e then S = � (Vars(e)� f e g) [�S; if e evaluates to trueif e evaluates to false�if e then S = � (f e g �Defs(S)) [�S; if e evaluates to trueif e evaluates to false�if e then S = � (Vars(e)�Defs(S)) [�SId if e evaluates to trueif e evaluates to false�if e then S1 else S2 = � (Vars(e)� f e g) [�S1(Vars(e)� f e g) [�S2 if e evaluates to trueif e evaluates to false�if e then S1 else S2 = � (f e g �Defs(S1)) [�S1(f e g �Defs(S2)) [�S2 if e evaluates to trueif e evaluates to false�if e then S1 else S2 = � (Vars(e)�Defs(S1)) [�S1(Vars(e)�Defs(S2)) [�S2 if e evaluates to trueif e evaluates to falseFigure 17: De�nition of dynamic dependence relations.4.1.2 Dynamic Dependence RelationsGopal describes an approach were dynamic dependence relations are used to compute dy-namic slices in [33]. He introduces dynamic versions of Bergeretti and Carr�e's information-ow relations12 �S , �S, and �S (see Section 3.1.2). The �S relation contains all pairs (v; e)such that statement e depends on the input value of v when program S is executed. Rela-tion �S contains all pairs (e; v) such that the output value of v depends on the executionof statement e. A pair (v; v0) is in relation �S if the output value of v0 depends on theinput value of v. In these de�nitions, it is presumed that S is executed for some �xedinput.For empty statements, assignments, and statement sequences Gopal's dependence re-lations are exactly the same as for the static case. The (static) information-ow relationsfor a conditional statement are derived from the statement itself, and from the statementsthat constitute its branches. For dynamic dependence relations, however, only the depen-dences that arise in the branch that is actually executed are taken into account. As in[16], the dependence relation for a while statement (omitted here) is expressed in terms ofdependence relations for nested conditionals with equivalent behavior. However, whereas12Gopal uses the notation sSv , vSv , and vSs . In order to avoid confusion and to make the relation withBergeretti and Carr�e's work explicit (see Section 3.1.2), we will use �S , �S , and �S instead.32

www.manaraa.com

Expression #a Affected Variables1 f i; n; x g2 f i; x g3 f i; x g4 f i; x g5 f x g6 ;7 f i; x g8 ;aExpressions are indicated by the line numbers in Figure 2.Figure 18: The � relation for the example program of Figure 2 (a) and input n = 2.in the static case loops are e�ectively replaced by their in�nite unwindings, the dynamiccase only requires that a loop be unwound k times, where k is the number of times the loopexecutes. The resulting de�nitions are very convoluted because the dependence relationsfor the body of the loop may di�er in each iteration. Hence, a simple transitive closureoperation, as was used in the static case, is insu�cient.Figure 17 summarizes Gopal's dynamic dependence relations. Here, Defs(S) denotesthe set of variables that is modi�ed by executing statement S. Using these relations, adynamic slice w.r.t. the �nal value of a variable v is de�ned as:�Pv � fe j (e; v) 2 �P gFigure 18 (a) shows the information-ow relation � for the (entire) program of Figure 2(a)13. From this relation it follows that the set of expressions which for input n = 2 a�ectthe value of x at the end of the program are f1; 2; 3; 4; 5; 7g. The corresponding dynamicslice is nearly identical to the slice shown in Figure 1 (b), the only di�erence being thefact that Gopal's algorithm also excludes the �nal statement write(x) on line 8.For the previous example, Gopal's dependence relations computed a similar slice tothat computed in Section 4.1.1; the only di�erence being the fact that the former omittedthe write(x) statement. However, for certain cases, Gopal's algorithm may compute anon-terminating slice of a terminating program. Figure 19 (a) shows the slice for theprogram of Figure 2 and input n = 1 as computed according to Gopal's algorithm.An advantage of using dependence relations is that, for certain cases, smaller slices arecomputed than by Korel and Laski's algorithm. For example, Figure 19 (b) shows theslice with respect to the �nal value of z for the example program of Figure 16 (a), forinput n = 2. Observe that the assignment x := 18, which occurs in the slice computedby the algorithm of Section 4.1.1, is not included in the slice here.4.1.3 Dependence GraphsMiller and Choi were the �rst to introduce a dynamic variation of the PDG, called the dy-namic program dependence graph in [67]. These graphs are used by their parallel programdebugger to perform owback analysis [10] and constructed incrementally, on demand.13Gopal does not de�ne information-ow relations for I/O statements. For the purposes of this example,it is assumed that the statement read(n) can be treated as an assignment n := SomeConstant, and thatthe statements write(sum) and write(product) should be treated as empty statements.33

www.manaraa.com

read(n);i := 1;while (i <= n) dobeginif (i mod 2 = 0) thenelsex := 18;end;
read(n);i := 1;while (i <= n) dobeginif (i mod 2 = 0) thenx := 17else ;z := x;i := i + 1end;(a) (b)Figure 19: (a) Non-terminating slice computed for example program of Figure 2 (a) withrespect to the �nal value of x, for input n = 1. (b) Slice for the example program of Figure 16(a) with respect to the �nal value of x, for input n = 2.Prior to execution, a (variation of a) static PDG is constructed, and the object code ofthe program is augmented with code which generates a log �le. In addition, an emulationpackage is generated. Programs are partitioned into so-called emulation blocks (typically,a subroutine). During debugging, the debugger uses the log �le, the static PDG, and theemulation package to re-execute an emulation block, and obtain the information necessaryto construct the part of the dynamic PDG corresponding to that block. In case the userwants to perform owback analysis to parts of the graph that have not been constructedyet, more emulation blocks are re-executed.In [5], Agrawal and Horgan develop an approach for using dependence graphs to com-pute dynamic slices. Their �rst two algorithms for computing dynamic slices are inac-curate, but useful for understanding their �nal approach. The initial approach uses thePDG as it was discussed in Section 3.1.314, and marks the vertices that are executed fora given test set. A dynamic slice is computed by computing a static slice in the subgraphof the PDG that is induced by the marked vertices. By construction, this slice only con-tains vertices that were executed. This solution is imprecise because it does not detectsituations where there exists a ow edge in the PDG between a marked vertex v1 and amarked vertex v2, but where the de�nitions of v1 are not actually used at v2.For example, Figure 21 (a) shows the PDG of the example program of Figure 2 (a).Suppose we want to compute the slice w.r.t. the �nal value of x for input n = 2. Allvertices of the PDG are executed, causing all PDG vertices to be marked. The staticslicing algorithm of Section 3.1.3 will therefore produce the entire program as the slice,even though the assignment x := 18 is irrelevant. This assignment is included in the slicebecause there exists a dependence edge from vertex x := 18 to vertex write(x) eventhough this edge does not represent a dependence that occurs during the second iterationof the loop. More precisely, this dependence only occurs in iterations of the loop wherethe control variable i has an odd value.The second approach consists of marking PDG edges as the corresponding dependences14The dependence graphs of [5] do not have an entry vertex. The absence of an entry vertex does notresult in a di�erent slice. For reasons of uniformity, all dependence graphs shown in the present paperhave an entry vertex. 34

www.manaraa.com

arise during execution. Again, the slice is obtained by traversing the PDG, but this timeonly along marked edges. Unfortunately, this approach still produces imprecise slices inthe presence of loops because an edge that is marked in some loop iteration will be presentin all subsequent iterations, even when the same dependence does not recur. Figure 21 (b)shows the PDG of the example program of Figure 16 (a). For input n = 2, all dependenceedges will be marked, causing the slice to consist of the entire program. It is shown in[5] that a potential re�nement of the second approach consisting of unmarking edges ofprevious iterations is incorrect.Agrawal and Horgan point out the interesting fact that their second approach forcomputing dynamic slices produces identical results as the algorithm proposed by Koreland Laski (see Section 4.1.1). However, the PDG of a program (with optionally markededges) requires only O(n2) space (n denotes the number of statements in the program),whereas Korel and Laski's trajectories are in principle unbounded in size.Agrawal and Horgan's second approach computes imprecise slices because it does notaccount for the fact that di�erent occurrences of a statement in the execution historymay be (transitively) dependent on di�erent statements. This observation motivates theirthird solution: create a distinct vertex in the dependence graph for each occurrence ofa statement in the execution history. This kind of graph is referred to as a DynamicDependence Graph (DDG). A dynamic slicing criterion is identi�ed with a vertex in theDDG, and a dynamic slice is computed by determining all DDG vertices from which thecriterion can be reached. A statement or control predicate is included in the slice if thecriterion can be reached from at least one of the vertices for its occurrences.Figure 21 shows the DDG for the example program of Figure 2 (a). The slicingcriterion corresponds to the vertex labeled write(z), and all vertices from which thisvertex can be reached are indicated by shading. Observe that the criterion cannot bereached from the vertex labeled x := 18. Therefore the corresponding assignment is notin the slice.The disadvantage of using DDGs is that the number of vertices in a DDG is equal tothe number of executed statements, which is unbounded. The number of dynamic slices,however, is in the worst case O(2n), where n is the number of statements in the programbeing sliced. Figure 20 shows a program Qn that has O(2n) dynamic slices. The programreads a number of values in variables xi (1 � i � n), and allows one to compute the sumPx2S x, for any number of subsets S � f x1; � � � ; xn g. The crucial observation here isthat, in each iteration of the outer loop, the slice with respect to statement write(y) willcontain exactly the statements read(xi) for xi 2 S. Since a set with n elements has 2nsubsets, program Qn has O(2n) di�erent dynamic slices.Agrawal and Horgan propose to reduce the number of vertices in the DDG by mergingvertices for which the transitive dependences map to the same set of statements. In otherwords, a new vertex is only introduced if it can create a new dynamic slice. Obviously, thischeck involves some run-time overhead. The resulting graph is referred to as the ReducedDynamic Dependence Graph (RDDG) of a program. Slices computed using RDDGs havethe same precision as those computed using DDGs.In the DDG of Figure 21 (c), the vertices labeled i := i + 1 and the rightmosttwo vertices labeled i <= n have the same transitive dependences; these vertices dependon statements 1, 2 ,3, and 8 of the program of Figure 16 (a). Hence, the RDDG for thisprogram, and input n = 2 is obtained by merging these four DDG vertices into one vertex.In [5], an algorithm is presented for the construction of an RDDG without having to35

www.manaraa.com

program Qn;read(x1);� � �read(xn);MoreSubsets := true;while MoreSubsets dobeginFinished := false;y := 0;while not(Finished) dobeginread(i);case (i) of1: y := y + xi;� � �n: y := y + xn;end;read(Finished);end;write(y);read(MoreSubsets);endend.Figure 20: Program Qn with O(2n) di�erent dynamic slices.
x := 18

read(n) i := 1 while (i <= n) write(x)

Entry

if (i mod 2 = 0) i := i + 1

x := 17 x := 17

Entry

read(n) i := 1 while (i <= n) write(z)

if (i mod 2 = 0) z := x i := i + 1

x := 18(a) (b)

x := 18

Entry

read(n) i := 1 while (i <= n) while (i <= n) while (i <= n) write(z)

i := i + 1if (i mod 2 = 0)

z := x

x := 17

i := i + 1if (i mod 2 = 0)

z := x (c)Figure 21: (a) PDG of the program of Figure 2 (a). (b) PDG of the program of Figure 16(a). (c) DDG of the program of Figure 16 (a).36

www.manaraa.com

keep track of the entire execution history. The information that needs to be maintained is:(i) for each variable, the vertex corresponding to its last de�nition, (ii) for each predicate,the vertex corresponding to its last execution, and (iii) for each vertex in the RDDG, thedynamic slice w.r.t. that vertex.4.2 Interprocedural Dynamic SlicingIn [3], Agrawal, DeMillo and Spa�ord consider dynamic slicing of procedures with variousparameter-passing mechanisms. In the discussion below, it is assumed that a procedureP with formal parameters f1; � � � ; fn is called with actual parameters a1; � � � ; an. Itis important to realize that in the approach of [3], dynamic data dependences based onde�nitions and uses of memory locations are used. This way, two potential problems areavoided. First, the use of global variables inside procedures does not pose any problems.Second, no alias analysis is required.Call-by-value parameter-passing is modeled by a sequence of assignments f1:=a1; � � �;fn:=an which is executed before the procedure is entered. In order to determine thememory cells for the correct activation record, the Use sets for the actual parameters aiare determined before the procedure is entered, and the Def sets for the formal parametersfi after the procedure is entered. For Call-by-value-result parameter-passing, additionalassignments of formal parameters to actual parameters have to be performed upon exitfrom the procedure. Call-by-reference parameter-passing does not require any actionsspeci�c to dynamic slicing, as the same memory cell is associated with correspondingactual and formal parameters ai and fi.An alternative approach for interprocedural dynamic slicing was presented by Kamkar,Shahmehri, and Fritzson in [52, 51]. This work distinguishes itself from the solution byAgrawal et al. by the fact that the authors are primarily concerned with procedure-levelslices. That is, they study the problem of determining the set of call sites in a programthat a�ect the value of a variable at a particular call site.During execution, a (dynamic dependence) summary graph is constructed. The ver-tices of this graph, referred to as procedure instances, correspond to procedure activationsannotated with their parameters15. The edges of the summary graph are either activationedges corresponding to procedure calls, or summary dependence edges. The latter typereects transitive data and control dependences between input and output parameters ofprocedure instances.A slicing criterion is de�ned as a pair consisting of a procedure instance, and an inputor output parameter of the associated procedure. After constructing the summary graph,a slice with respect to a slicing criterion is determined in two steps. First, the parts ofthe summary graph from which the criterion can be reached is determined; this subgraphis referred to as an execution slice. Vertices of an execution slice are partial procedureinstances, because some parameters may be `sliced away'. An interprocedural programslice consists of all call sites in the program for which a partial instance occurs in theexecution slice.Three approaches for constructing summary graphs are considered. In the �rst ap-proach, intraprocedural data dependences are determined statically which may result in15More precisely, Kamkar refers to the incoming and outgoing variables of a procedure. This notion alsoapplies to global variables which are referenced or modi�ed in a procedure.37

www.manaraa.com

inaccurate slices in the presence of conditionals. In the second approach, all dependencesare determined at run-time. While this results in accurate dynamic slices, the depen-dences for a procedure P have to be re-computed every time P is called. The thirdapproach attempts to combine the e�ciency of the `static' approach with the accuracyof the `dynamic' approach by computing the dependences inside basic blocks statically,and the inter-block dependences dynamically. In all approaches control dependences16 aredetermined statically. It is unclear how useful this third approach is in the presence ofcomposite variables and pointers, where the run-time intra-block dependences cannot bedetermined statically: additional alias analysis would have to be performed at run-time.In [49], Kamkar adapts the interprocedural slicing method of [51, 52] to computestatement-level interprocedural slices (i.e., slices consisting of a set of statements insteadof a set of call sites). In essence, this is accomplished by introducing a vertex for eachstatement instance (instead of each procedure instance) in the summary graph. The samethree approaches (static, dynamic, combined static/dynamic) for constructing summarygraphs can be used.Choi, Miller and Netzer discuss an approach for interprocedural owback analysisin [22]. Initially, it is assumed that a procedure call may modify every global variable;to this end, the static PDG is augmented with linking edges indicating potential datadependences. In a second phase, interprocedural summary information is used to eitherreplace linking edges by data dependence edges, or delete them from the graph. Somelinking edges may remain; these have to be resolved at run-time.4.3 Dynamic Slicing in the Presence of Composite Datatypes/Pointers4.3.1 Dynamic Flow ConceptsIn [57], Korel and Laski consider slicing in the presence of composite variables by regardingeach element of an array, or �eld of a record as a distinct variable. Dynamic data structuresare treated as two distinct entities, namely the pointer itself and the object being pointedto. For dynamically allocated objects, they propose a solution where a unique name isassigned to each object.4.3.2 Dependence GraphsAgrawal, DeMillo, and Spa�ord present a dependence graph based algorithm for dynamicslicing in the presence of composite datatypes and pointers in [3]. Their solution consistof expressing Def and Use sets in terms of actual memory locations provided by thecompiler. The algorithm of [3] is similar to that for static slicing in the presence ofcomposite datatypes and pointers by the same authors (see Section 3.4). However, duringthe computation of dynamic reaching de�nitions, no Maybe intersections can occur|onlyComplete and Partial intersections.Choi, Miller, Netzer extend the owback analysis method of [67] (see Section 4.1.3) inorder to deal with arrays and pointers. For arrays, linking edges are added to their staticPDGs; these edges express potential data dependences which are either deleted or changed16Kamkar et al. use a notion of termination-preserving control dependence that is similar to Podgurskiand Clarke's weak control dependence [70]. 38

www.manaraa.com

into genuine data dependences at run-time. Pointer accesses are resolved at run-time, byrecording all uses of pointers in the log �le.4.4 Dynamic Slicing of Distributed Programs4.4.1 Dynamic Flow ConceptsKorel and Ferguson extend the dynamic slicing method of [56, 57] to distributed programswith Ada-type rendezvous communication (see, e.g., [12]). For a distributed program, theexecution history is formalized as a distributed program path which, for each task, comprisesof: (i) the sequence of statements (trajectory) executed by it, and (ii) a sequence of triples(A;C;B) identifying each rendezvous the task is involved in. Here, A identi�es the acceptstatement in the task, B identi�es the other task that participated in the communication,and C denotes the entry call statement in the task that was involved in the rendezvous.A dynamic slicing criterion of a distributed program speci�es: (i) the input of eachtask, (ii) a distributed program path P , (iii) a task w, (iv) a statement occurrence q inthe trajectory of w, and (v) a variable v. A dynamic slice with respect to such a criterionis an executable projection of the program that is obtained by deleting statements fromit. However, the program is only guaranteed to preserve the behavior of the program ifthe rendezvous in the slice occur in the same relative order as in the program. (Note thatnot all rendezvous of the program need to be in the slice.)The method for computing slices of distributed programs of [55] is basically a general-ization of the method of [56, 57], though stated in a slightly di�erent manner. In additionto the previously discussed dynamic ow concepts (see Section 4.1.1), a notion of com-munication inuence is introduced, to capture the interdependences between tasks. Theauthors also present a distributed version of their algorithm which uses a separate processfor slicing each task.4.4.2 Dependence GraphsDuesterwald, Gupta, and So�a present a dependence graph based algorithm for computingdynamic slices of distributed programs [25]. They introduce a Distributed DependenceGraph (DDG)17 for representing distributed programs.A distributed program P consists of a set of processes P1; � � � ; Pn. Communica-tion between processes is assumed to be synchroneous and nondeterministic and is ex-pressed by way of send and receive statements. A distributed dynamic slicing criterion(I1;X1); � � � ; (In;Xn) speci�es for each process Pi its input Ii, and a set of statementsXi. A distributed dynamic slice S is an executable set of processes P 01; � � � ; P 0n such thatthe statements of P 0i are a subset of those of Pi. Slice S computes the same values atstatements in each Xi as program P does, when executed with the same input. This isaccomplished by: (i) including all input statements in the slice, and (ii) replacing non-deterministic communication statements in the program by deterministic communicationstatements in the slice.A DDG contains a single vertex for each statement and control predicate in the pro-gram. Control dependences between statements are determined statically, prior to execu-tion. Edges for data and communication dependences are added to the graph at run-time.17This abbreviation \DDG" used in Section 4.4.2 should not be confused with the notion of a DynamicDependence Graph that was discussed earlier in Section 4.1.39

www.manaraa.com

Slices are computed in the usual way by determining the set of DDG vertices from whichthe vertices speci�ed in the criterion can be reached. Both the construction of the DDGand the computation of slices is performed in a distributed manner; a separate DDG con-struction process and slicing process is assigned to each process Pi in the program; theseprocesses communicate when a send or receive statement is encountered.Due to the fact that a single vertex is used for all occurrences of a statement inthe execution history, inaccurate slices may be computed in the presence of loops (seeSection 4.1.1). For example, the slice with respect to the �nal value of z for the programof Figure 16 with input n = 2 will be the entire program.Cheng presents an alternative dependence graph based algorithm for computing dy-namic slices of distributed and concurrent programs in [19]. The PDN representation ofa concurrent program (see Section 3.5) is used for computing dynamic slices. Cheng'salgorithm is basically a generalization of the initial approach proposed by Agrawal andHorgan in [5]: the PDN vertices corresponding to executed statements are marked, andthe static slicing algorithm of Section 3.5 is applied to the PDN subgraph induced by themarked vertices. As was discussed in Section 4.1.3, this yields inaccurate slices.In [22, 67], Choi et al. describe how their approach for owback analysis can beextended to parallel programs. Shared variables with semaphores, message-passing com-munication, and Ada-type rendezvous mechanisms are considered. To this end, a paralleldynamic graph is introduced which contains synchronization vertices for synchronizationoperations (such as P and V on a semaphore) and synchronization edges which representdependences between concurrent processes. Choi et al. explain how, by analysis of theparallel dynamic graph, read/write and write/write conicts between concurrent processescan be found.4.5 Comparing Methods for Dynamic SlicingIn this section, we compare and classify the dynamic slicing methods that were presentedearlier. The section is organized as follows: Section 4.5.1 summarizes the problems that areaddressed in the literature. Sections 4.5.2 and 4.5.3 compare the accuracy and e�ciencyof slicing methods that address the same problem, respectively. Finally, Section 4.5.4investigates the possibilities for `combining' algorithms that deal with di�erent problems.4.5.1 OverviewTable 4 lists the dynamic slicing algorithms that we discussed earlier, and summarizesthe issues studied in each paper. For each paper, the table shows: (i) the computationmethod, (ii) whether or not the computed slices are executable programs, (iii) whetheror not an interprocedural solution is supplied, (iv) the data types under consideration,and (v) whether or not interprocess communication is considered. Similar to Table 2, thetable only shows problems that have been addressed. It does not indicate how variousalgorithms may be combined, and it also does not give an indication of the quality of thework.Unlike in the static case, there exists a signi�cant di�erence between methods whichcompute executable slices [25, 55, 56, 57], and approaches which compute slices that aremerely sets of statements [3, 5, 33]. The latter type of slice may not be executable due40

www.manaraa.com

Computation Executable Interprocedural Data InterprocessMethoda Solution Typesb CommunicationKorel, Laski [56, 57] D yes no S, A, P noKorel, Ferguson [55] D yes no S, A yesGopal [33] I no no S noAgrawal, Horgan [5] G no no S noAgrawal et al. [1, 3] G no yes S, A, P noKamkar et al. [51, 52] G no yes S noDuesterwald et al. [25] G yes no S, A, P yesCheng [19] G no no S yesChoi et al. [22, 67] G no yes S, A, P yesaD = dynamic ow concepts, I = dynamic dependence relations, G = reachability in a dependencegraph.bS = scalar variables, A = arrays/records, P = pointers.Table 4: Overview of dynamic slicing methods.to the absence of assignments for incrementing loop counters18. For convenience, we willhenceforth refer to such slices as `non-executable' slices. As we discussed in Section 4.1.1,the algorithms that compute executable dynamic slices may produce inaccurate results inthe presence of loops.Apart from the work by Venkatesh [79], there is very little semantic justi�cation forany of the methods for computing `non-executable' slices. The algorithms of [5, 19, 51,52, 67] are graph-reachability algorithms that compute a set of statements that directly orindirectly `a�ect' the values computed at the criterion. Besides the algorithms themselves,little or no attention is paid to formal characterization of such slices.4.5.2 Accuracybasic algorithms The slices computed by Korel and Laski's algorithm [56, 57] (see Sec-tion 4.1.1) are less accurate than those computed by the algorithms by Agrawal andHorgan [5] (see Section 4.1.3) and Gopal [33] (see Section 4.1.2). This is due to Koreland Laski's constraint that their slices should be executable. Slices of terminatingprograms, as computed by Agrawal and Horgan and Gopal, may consist of divergingprograms.procedures Dependence graph based algorithms for interprocedural dynamic slicing wereproposed by Agrawal, DeMillo, and Spa�ord [3], and by Kamkar et al. [51, 52] (seeSection 4.2). It is unclear if one of these algorithms procedures more accurate slicesthan the other.composite variables and pointers Korel and Laski [57] (see Section 4.1.1), and Agrawal,DeMillo, and Spa�ord (see Section 4.1.3) proposed methods for dynamic slicing inthe presence of composite variables and pointers. We are unaware of any di�erencein accuracy.interprocess communication Korel and Ferguson [55] (see Section 4.4.1) and Duester-wald, Gupta, and So�a [25] (see Section 4.4.2) compute executable slices, but deal18Of course, such a slice may be executed anyway; however, it may not terminate.41

www.manaraa.com

with nondeterminism in a di�erent way: the former approach requires a mechanismfor replaying rendezvous in the slice in the same relative order as they appeared inthe original program, whereas the latter approach replaces nondeterministic com-munication statements in the program by deterministic communication statementsin the slice. Cheng [19] and Choi et al. [22, 67] (see Section 4.4.2) do not addressthis problem because the slices they compute are not necessarily executable. Themethods by Cheng and Duesterwald et al. are inaccurate because static dependencegraphs are used for computing dynamic slices (see the discussion in Section 4.1.3).4.5.3 E�ciencySince dynamic slicing involves run-time information, it is not surprising that all dynamicslicing methods discussed in this section have time requirements that depend on the num-ber of executed statements (or procedure calls in the case of [51, 52]) N . All algorithmsspend at least O(N) time during execution in order to store the execution history of theprogram, or to update dependence graphs. Certain algorithms (e.g., [55, 56, 57]) traversethe execution history in order to extract the slice and thus require again at least O(N) timefor each slice, whereas other algorithms require less (sometime even constant) time. Whenwe discuss time requirements in the discussion below, we will ignore the time spent duringexecution that is needed to construct histories or dependence graphs. Space requirementswill always be discussed in detail.basic algorithms Korel and Laski's solution [56, 57] (see Section 4.1.1) requires O(N)space to store the trajectory, and O(N2) space to store the dynamic ow concepts.Construction of the ow concepts requires O(N � (v + n)) time, where v and n arethe number of variables and statements in the program, respectively. Extracting asingle slice from the computed ow concepts can be done in O(N) time.The algorithm by Gopal [33] (see Section 4.1.2) requires O(N) space to store theexecution history and O(n � v) space to store the �S relation. The time requiredto compute the �S relation for a program S is bounded by O(N2 � v2). From thisrelation, slices can be extracted in O(v) time.As we discussed in Section 4.1.3, the slicing method proposed by Agrawal and Horganrequires at most O(2n) space, where n is the number of statements in the program.Since vertices in an RDDG are annotated with their slice during execution, slicescan be extracted from it in O(1).procedures The interprocedural dynamic slicing method proposed by Kamkar et al. [51,52] (see Section 4.2) requires O(P 2) space to store the summary graph, where Pis the number of executed procedure calls. A traversal of this graph is needed toextract a slice; this takes O(P 2) time.The time and space requirements of the method by Agrawal, DeMillo, and Spa�ord[3] are essentially the same as those of the Agrawal-Horgan basic slicing method wediscussed above.composite variables and pointers The algorithms by Korel and Laski [57] (see Sec-tion 4.3.1) and Agrawal, DeMillo, and Spa�ord [3] (see Section 4.3.2) for slicing in42

www.manaraa.com

Interprocedural Composite Vars/ InterprocessSlicing Pointers CommunicationDyn. Flow Concepts - Korel, Laski [56, 57] Korel, Ferguson [55]Dyn. Dep. Relations Gopal [33] - -Dependence Graphs Agrawal et al. [3] Agrawal et al. [3] Duesterwald et al. [25]Kamkar et al. [51, 52] Cheng [19]Choi et al. [22, 67]Table 5: Orthogonal problems of dynamic slicing.the presence of composite variables and pointers are adaptations of the basic slic-ing algorithms by Korel and Laski and Agrawal and Horgan, respectively (see thediscussion above). These adaptations, which essentially consist of a change in thereaching de�nitions functions that is used to determine data dependences, does nota�ect the worst-case behavior of the algorithms. Therefore, we expect the time andspace requirements to be the same as in the scalar variable case.interprocess communication The algorithms by Cheng [19] and Duesterwald et al.[25] are based on static PDGs. Therefore, only O(n2) space is required to store thedependence graph, and slices can be extracted in O(n2) time. The distributed slicingalgorithm in [25] uses a separate slicing process for each process in the program; theslicing process for process Pi requires time O(ei), where ei is the number of edges inthe PDG for process Pi. The communication overhead between the slicing processesrequires at most O(e) time, where e is the number of edges in the entire graph.4.5.4 Combining Dynamic Slicing AlgorithmsTable 5 displays solutions to `orthogonal' problems of dynamic slicing: dealing with pro-cedures, composite variables and pointers, and communication between processes. Thealgorithms based on dynamic ow concepts for dealing with composite variables/pointers[57], and interprocess communication [55] may be integrated with little problems. Fordependence graphs, however, the situation is slightly more complicated because:� Di�erent graph representations are used. Agrawal et al. [3], Kamkar et al. [51, 52]and Choi et al. [22, 67] use dynamic dependence graphs with distinct vertices fordi�erent occurrence of statements in the execution history. In contrast, Duesterwaldet al. [25] and Cheng [19] use variations of static PDGs.� The dynamic slicing by Agrawal et al. [3] is based on de�nition and use of memorylocations. All other dependence graph based slicing methods are based on de�nitionsand uses of variable names.Furthermore, it is unclear if the combined static/dynamic interprocedural slicing approachby Kamkar et al. [51, 52] is practical in the presence of composite variables and pointers,because the intra-block dependences cannot be determined statically in this case, andadditional alias analysis would be required at run-time.
43

www.manaraa.com

read(n);i := 1;if (i > 0) thenn := n + 1elsen := n * 2;write(n)
read(n);i := 1;if (i > 0) thenn := n + 1else ;write(n)

read(n);n := n + 1;write(n)(a) (b) (c)Figure 22: (a) Example program. (b) Accurate slice obtained by performing constant propa-gation. (c) Minimal slice.5 More Accurate Slicing5.1 Language-speci�c and Syntactic IssuesAlthoughmost slicing algorithms are stated in a language-independent way, some language-speci�c and syntactic issues cannot be avoided in practice [46]. In [82], Weiser states that\good source language slicing requires transformations beyond statement deletion". Thisis for example the case when a language does not allow if statements with empty branches,and where a slicing algorithm would exclude all statements in one of its branches. In fact,two characteristics of all slicing methods discussed so far are:� Slices are obtained by deleting statements from a program.� Slices are computed by tracing data and control dependences backwards from theslicing criterion.However, if the singular objective is to obtain slices that are as small as possible, both ofthese constraints need to be dismissed.Consider for example the program of Figure 22 (a). When asked for the slice withrespect to statement write(n), traditional slicing algorithms will produce the entire pro-gram. However, by using constant propagation techniques [80], one can determine thatthe value of i is constant, causing the else branch of the conditional never to be selected.Therefore, the accurate slice of Figure 22 (b) can be computed in principle. Moreover, ifreplacement of an entire if statement by one of the statements in its branches is allowed,one might even compute the minimal slice of Figure 22 (c). Other compiler optimizationtechniques such as loop invariant motion and loop unrolling (see e.g. [87] for a compre-hensive overview) may also be employed to obtain more precise slices.Figure 23 (a) shows another example program, which is to be sliced with respect to its�nal statement write(y). Once again, traditional slicing algorithms will fail to omit anystatements. A more accurate slice for this example can be acquired by `merging' the two ifstatements. The e�ect of this semantics-preserving transformation is shown in Figure 23(b). Clearly, a slicing algorithm which could conceptually perform this transformationwould be able to determine the more accurate slice shown in Figure 23 (c).Field and Tip are currently working on a reduction-theoretical framework for comput-ing accurate slices. Instead of performing semantics-preserving transformations on sourceprograms, programs are �rst compiled into an intermediate graph representation namedPim [28]. This representation was carefully designed to accommodate transformations and44

www.manaraa.com

read(p);read(q);if (p = q) thenx := 18elsex := 17;if (p <> q) theny := x;elsey := 2;write(y)
read(p);read(q);if (p = q) thenbeginx := 18;y := 2endelsebeginx := 17;y := xendwrite(y)

read(p);read(q);if (p = q) then;elsex := 17;if (p <> q) theny := x;elsey := 2;write(y)(a) (b) (c)Figure 23: (a) Example program. (b) Transformed program. (c) More accurate slice obtainedby slicing in the transformed program.simpli�cations such as those shown in Figures 22 and 23. The transformation of sourceprograms to Pim graphs, as well as subsequent optimizations and transformations on thisrepresentation are expressed by way of an algebraic speci�cation [17]. Orienting the equa-tions of this speci�cation from left to right yields a term rewriting system [54]. In [29], adynamic dependence relation for term rewriting systems is developed which can be usedto keep track of `corresponding' parts of a source program, the intermediate representa-tion it compiles to, and the optimized version of that Pim-graph. Roughly speaking, aPim graph contains a subgraph for each statement that represents its store expression.Slices are computed in this framework by selecting a store expression in the optimizedPim graph, and tracing the dependence relations back to the source program.Both Pim and dynamic dependence relations have been implemented using theASF+SDF programming environment generator [53] developed at CWI. Recent experi-ments have produced promising results. In particular, the (accurate) slices of Figures 22(b) and 23 (c) have been computed.6 Applications of Program Slicing6.1 Debugging and Program AnalysisDebugging can be a di�cult task when one is confronted with a large program, and littleclues regarding the location of a bug. Program slicing is useful for debugging, because itpotentially allows one to ignore many statements in the process of localizing a bug [64].If a program computes an erroneous value for a variable x, only the statements in theslice w.r.t. x have (possibly) contributed to the computation of that value; all statementswhich are not in the slice can safely be ignored.Forward slices are also useful for debugging. Suppose that, in the course of debugging,statement s is found to be incorrect. Before making a change to s, one could examinethe forward slice w.r.t. s, indicating the program parts a�ected by s. This may produceuseful insights how the error may be corrected.Lyle and Weiser [65] introduce program dicing, a method for combining the information45

www.manaraa.com

of di�erent slices. The basic idea is that, when a program computes a correct value forvariable x and an incorrect value for variable y, the bug is likely to be found in statementswhich are in the slice w.r.t. y but not in the slice w.r.t. x. This approach is not fail-safe in the presence of multiple bugs, and when computations that use incorrect valuesproduce correct values (referred to as coincidental correctness in [1]). The authors claimthat program dicing still produces useful results when these assumptions are relaxed.Static slicing methods can detect `dead' code, i.e., statements which cannot a�ect anyoutput of the program [16]. Often, such statements are not executable because of thepresence of a bug. Static slicing can also be used to determine uninitialized variableswhich are used in expressions, another symptom of an error in the program [16].In debugging, one is often interested in a speci�c execution of a program that exhibitsanomalous behavior. Dynamic slices are particularly useful here, because they only reectthe actual dependences of that execution, resulting in smaller slices than static ones.Agrawal's thesis [1] contains a detailed discussion how static and dynamic [3, 5] slicingcan be utilized for semi-automated debugging of programs. He proposes an approachwhere the user gradually `zooms out' from the location where the bug manifested itselfby repeatedly considering larger data and control slices. A data slice is obtained by onlytaking (static or dynamic) data dependences into account; a control slice consists of theset of control predicates surrounding a language construct. The closure of all data andcontrol slices w.r.t. an expression is the (static or dynamic) slice w.r.t. the set of variablesused in the expression. The information of several dynamic slices can be combined to gainsome insight into the location of a bug. In [1], several operations on slices are proposed tothis end, such as union, intersection, and di�erence. The di�erence operation is a dynamicversion of the program `dicing' notion of [65]. Obviously, these operations for combiningslices may produce misleading information in the presence of multiple bugs or coincidentalcorrectness. In [4], implementation of a debugging tool based on the ideas in [1, 3, 5] isdiscussed.In [22], Choi, Miller and Netzer describe the design and e�cient implementation ofa debugger for parallel programs which incorporates owback analysis, a notion intro-duced in the seminal paper by Balzer [10]. Intuitively, owback analysis reveals how thecomputation of values depends on the earlier computation of other values. The di�erencebetween owback analysis and (dependence graph based) dynamic slices is that the formernotion allows one to interactively browse through a dependence graph, whereas the latterconsists of the set of all program parts corresponding to vertices of the graph from whicha designated vertex|the criterion|can be reached.Fritzson et al. use interprocedural static [30] and dynamic [49, 52] slicing for algorith-mic debugging [77, 78]. An algorithmic debugger partially automates the task of localizinga bug by comparing the intended program behavior with the actual program behavior. Theintended behavior is obtained by asking the user whether or not a program unit (e.g., aprocedure) behaves correctly. Using the answers given by the user, the location of the bugcan be determined at the unit level. By applying the algorithmic debugging process to aslice w.r.t. an incorrectly valued variable instead of the entire program, many irrelevantquestions can be skipped.
46

www.manaraa.com

6.2 Program Di�erencing and Program IntegrationProgram di�erencing [37] is the task of analyzing an old and a new version of a programin order to determine the set of program components of the new version that representsyntactic and semantic changes. Such information is useful because only the programcomponents reecting changed behavior need to be tested. The key issue in programdi�erencing consists of partitioning the components of the old and new version in a waythat two components are in the same partition only if they have equivalent behaviors. Theprogram integration algorithm of [44] discussed below, compares slices in order to detectequivalent behaviors. However, a partitioning technique presented in [37], which is notbased on comparing slices, produces more accurate results because semantics-preservingtransformations can be accommodated.Horwitz, Prins, and Reps use the static slicing algorithm for single-procedure programsof [44] as a basis for an algorithm that integrates changes in variants of a program [41].The inputs of their algorithm consist of a program Base, and two variants A and B whichhave been derived from Base. The algorithm consists of the following steps:1. The PDGs GBase , GA, and GB are constructed. Correspondences between `related'vertices of these graphs are assumed to be available.2. Sets of a�ected points of GA and GB w.r.t. GBase are determined; these consist ofvertices in GA (GB) which have a di�erent slice in GBase19.3. A merged PDG GM is constructed from GA, GB, and the sets of a�ected pointsdetermined in (2).4. Using GA, GB, GM , and the sets of a�ected points computed in (2), the algorithmdetermines whether or not the behaviors of A and B are preserved in GM . This isaccomplished by comparing the slices w.r.t. the a�ected points of GA (GB) in GMand GA (GB). If di�erent slices are found, the changes interfere and the integrationcannot be performed.5. If the changes in A and B do not interfere, the algorithm tests if GM is a feasiblePDG, i.e., if it corresponds to some program. If this is the case, program M isconstructed from GM . Otherwise, the changes in A and B cannot be integrated.A semantic justi�cation for the single-procedure slicing algorithm of [44] and the pro-gram integration algorithm of [41] is presented in [76]. This paper formalizes the relation-ship between the execution behaviors of programs, slices of those programs, and betweenvariants of a program and the corresponding integrated version. The comparison of slices(in step 4) relies on the existence of a mapping between the di�erent components. If sucha mapping were not available, however, the techniques of [42] for comparing two slices inlinear time of the sum of their sizes could be used.An alternative formulation of the Horwitz-Prins-Reps program integration algorithm,based on Brouwerian algebras, is presented in [71]. The algebraic laws that hold in suchalgebras are used to restate the algorithm and to prove properties such as associativity ofconsecutive integrations.19These sets of a�ected points can be computed e�ciently by way of a forward slice w.r.t. all directlya�ected points, i.e., all vertices in GA that do not occur in GBase and all vertices in that have a di�erentset of incoming edges in GA and in GBase [43]. 47

www.manaraa.com

6.3 Software MaintenanceOne of the problems in software maintenance consists of determining whether a changeat some place in a program will a�ect the behavior of other parts of the program. In[31, 32], Gallagher and Lyle use static slicing for the decomposition of a program into aset of components (i.e., reduced programs), each of which captures part of the originalprogram's behavior. They present a set of guidelines for the maintainer of a componentwhich, if obeyed, preclude changes of the behavior of other components. Moreover, theydescribe how changes in a component can be merged back into the complete program ina semantically consistent way.Gallagher and Lyle use the notion of a decomposition slice for the decomposition ofprograms. A decomposition slice w.r.t. a variable v consists of all statements that maya�ect the `observable' value of v at some point; it is de�ned as the union of the slices w.r.t.v at any statement that outputs v, and the the last statement of the program. An output-restricted decomposition slice (ORD slice) is a decomposition slice from which all outputstatements are removed. Two ORD slices are independent if they have no statements incommon; an ORD slice is strongly dependent on another ORD slice if it is a subset ofthe latter. An ORD slice which is not strongly dependent on any other ORD slice ismaximal. A statement which occurs in more than one ORD slice is dependent; otherwiseit is independent. A variable is dependent if it is assigned to in some dependent statement;it is independent if it is only assigned to in independent statements. Only maximal ORDslices contain independent statements, and the union of all maximal ORD slices is equalto the original program (minus output statements). The complement of an ORD slice isde�ned as the original program minus all independent statements of the ORD slice andall output statements. Intuitively, a decomposition slice captures part of the behavior ofa program, and its complement captures the behavior of the rest of the program.The essential observation of [32] is that independent statements in a slice do not a�ectthe data and control ow in the complement. This results in the following guidelines formodi�cation:� Independent statements may be deleted from a decomposition slice.� Assignments to independent variables may be added anywhere in a decompositionslice.� Logical expressions and output statements may be added anywhere in a decomposi-tion slice.� New control statements that surround any dependent statements will a�ect the com-plement's behavior.New variables may be considered as independent variables, provided that there are noname clashes with variables in the complement. If changes are required that involve adependent variable v, the user can either extend the slice so that v is independent (in away described in the paper), or introduce a new variable. Merging changes to componentsinto the complete program is a trivial task. Since it is guaranteed that changes to an ORDslice do not a�ect its complement, only testing of the modi�ed slice is necessary.48

www.manaraa.com

6.4 TestingA program satis�es a `conventional' data ow testing criterion if all def-use pairs occur ina successful test-case. Duesterwald, Gupta, and So�a propose a more rigorous testing cri-terion, based on program slicing in [26]: each def-use pair must be exercised in a successfultest-case; moreover it must be output-inuencing, i.e., have an inuence on at least oneoutput value. A def-use pair is output-inuencing if it occurs in an output slice, i.e., a slicew.r.t. an output statement. It is up to the user, or an automatic test-case generator toconstruct enough test-cases such that all def-use pairs are tested. Three slicing approachesare utilized, based on di�erent dependence graphs. Static slices are computed using staticdependence graphs (similar to the PDGs in [44]), dynamic slices are computed using dy-namic dependence graphs (similar to [5], but instances of the same vertex are merged,resulting in a slight loss of precision), and hybrid slices are computed using dependencegraphs with combined static and dynamic information (similar to the quasi-static slicesin [79]). In the hybrid approach, the set of variables in the program is partitioned intotwo disjoint subsets in a way that variables in one subset do not refer to variables in theother subset. Static dependences are computed for one subset (typically scalar variables),dynamic dependences for the other subset (typically arrays and pointers). The advantageof this approach is that it combines reasonable e�ciency with reasonable precision.In [50], Kamkar, Shahmehri, and Fritzson extend the work of Duesterwald, Gupta,and So�a to multi-procedure programs. To this end, they de�ne appropriate notions ofinterprocedural def-use pairs. The interprocedural dynamic slicing method of [51, 52] isused to determine which interprocedural def-use pairs have an e�ect on a correct outputvalue, for a given test case. The summary graph representation of [51, 52] (see Section 4.2)is slightly modi�ed by annotating vertices and edges with def-use information. This way,the set of def-use pairs exercised by a slice can be determined e�ciently.Regression testing consists of re-testing only the parts a�ected by a modi�cation ofa previously tested program, while maintaining the `coverage' of the original test suite.Gupta, Harrold, and So�a describe an approach to regression testing where slicing tech-niques are used [34]. Backward and forward static slices serve to determine the programparts a�ected by the change, and only test cases which execute `a�ected' def-use pairsneed to be executed again. Conceptually, slices are computed by backward and forwardtraversals of the CFG of a program, starting at the point of modi�cation. However, the al-gorithms in [34] are designed to determine the information necessary for regression testingonly (i.e., a�ected def-use pairs).In [14], Bates and Horwitz use a variation of the PDG notion of [41] for incrementalprogram testing. Testing criteria are de�ned in terms of PDG notions: i.e., the all-verticestesting criterion is satis�ed if each vertex of the PDG is exercised by a test set (i.e., eachstatement and control predicate in the program is executed). An all-ow-edges criterion isde�ned in a similar manner. Given a tested and subsequently modi�ed program, slicing isused to determine: (i) the statements a�ected by the modi�cation, and (ii) the test-casesthat can be reused for the modi�ed program. Roughly speaking, the former consists ofthe statements which did not occur previously as well as and the statements which havedi�erent slices. The latter requires partitioning the statements of the original and themodi�ed program into equivalence classes; statements are in the same class if they havethe same `control' slice (a slightly modi�ed version of the standard notion). Bates andHorwitz proof that statements in the same class are exercised by the same test cases.49

www.manaraa.com

6.5 Tuning CompilersLarus and Chandra present an approach to the tuning of compilers where dynamic slicingis used to detect potential occurrences of redundant common subexpressions [62]. Findingsuch a common subexpression is an indication of sub-optimal code being generated.Object code is instrumented with trace-generating instructions. A trace-regeneratorreads a trace and produces a stream of events, such as the read and load of a memory loca-tion. This stream of events is input for a compiler-auditor (e.g., a common-subexpressionelimination auditor) which constructs dynamic slices w.r.t. the current values stored inregisters. Larus and Chandra use a variant of the approach in [5]: a dynamic slice isrepresented by directed acyclic graph (DAG) containing all operators and operands thatproduced the current value in a register. A common subexpression occurs when isomorphicDAGs are constructed for two registers. However, the above situation only indicates that acommon subexpression occurs in a speci�c execution. A common subexpression occurs inall execution paths if its inputs are the same in all executions. This is veri�ed by checkingthat: (i) the program counter PC1 for the �rst occurrence of the common subexpressiondominates the program counter PC2 for the second occurrence, (ii) the register containingthe �rst occurrence of the common subexpression is not modi�ed along any path betweenPC1 and PC2, and (iii) neither are the inputs to the common subexpression modi�edalong any path between PC1 and PC2. Although the third condition is impossible toverify in general, it is feasible to do so for a number of special cases. In general, it is upto the compiler writer to check condition (iii).6.6 Other ApplicationsWeiser describes how slicing can be used to parallelize the execution of a sequential program[84]. Several slices of a program are executed in parallel, and the outputs of the slices arespliced together in such a way that the I/O behavior of the original program is preserved.In principle, the splicing process may take place in parallel with the execution of theslices. A natural requirement of Weiser's splicing algorithm is that the set of all slicesshould `cover' the execution behavior of the original program. Splicing does not relyon a particular slicing technique; any method which computes executable static slices isadequate. Only programs with structured control ow are considered, because Weiser'ssplicing algorithm depends on the fact that execution behavior can be expressed in termsof a so-called program regular expression. The main reason for this is that reconstructionof the original I/O behavior becomes unsolvable in the presence of irreducible control ow.Ott and Thus view a module as a set of processing elements which act together tocompute the outputs of a module. They classify the cohesion class of a module (i.e,the kind of relationships between the processing elements) by comparing the slices w.r.t.di�erent output variables [68]. Low cohesion corresponds to situations where a module ispartitioned into disjoint sets of unrelated processing elements. Each set is involved in thecomputation of a di�erent output value, and there is no overlap between the slices. Controlcohesion consists of two or more sets of disjoint processing elements each of which dependson a common input value; the intersection of slices will consist of control predicates. Datacohesion corresponds to situations where data ows from one set of processing elements toanother; slices will have non-empty intersection and non-trivial di�erences. High cohesionsituations resemble pipelines. The data from a processing element ows to its successor;50

www.manaraa.com

the slices of high cohesion modules will overlap to a very large extent. The paper does notrely on any speci�c slicing method, and no quantitative measures are presented.In [18], Binkley presents a graph rewriting semantics for System Dependence Graphswhich he uses to perform interprocedural constant propagation. The interprocedural slic-ing algorithm of [44] is used to extract slices that may be executed to obtain constantvalues.In [15], Beck and Eichmann consider the case where a `standard' module for an abstractdata type module is used, and where only part of its functionality is required. Theirobjective is to `slice away' all unnecessary code in the module. To this end, they generalizethe notion of static slicing to modular programs. In order to compute a reduced versionof a module, an interface dependence graph (IDG) is constructed. This graph containsvertices for all de�nitions of types and global variables, and subprograms inside a module.Moreover, the IDG contains edges for every def-use relation between vertices. An interfaceslicing criterion consists of a module and a subset of the operations of the ADT. Computinginterface slices corresponds to solving a reachability problem in an IDG. Inter-moduleslices, corresponding to situations where modules import other modules, can be computedby deriving new criteria for the imported modules.Ning, Engberts, and Kozaczynski discuss a set of tools for extracting componentsfrom large Cobol systems. These tools include facilities for program segmentation, i.e.,distinguishing pieces of functionally related code. In addition to backward and forwardstatic slices, condition-based slices can be determined. For a condition-based slice, thecriterion speci�es a constraint on the values of certain variables.7 ConclusionsWe have presented a survey of the static and dynamic slicing techniques that can be foundin the present literature. As a basis for classifying slicing techniques we have used thecomputation method, and a variety of programming language features such as procedures,arbitrary control ow, composite variables/pointers, and interprocess communication. Es-sentially, the problem of slicing in the presence of one of these features is `orthogonal' tosolutions for each of the other features. For dynamic slicing methods, an additional issue isthe fact whether or not the computed slices are executable programs which capture a partof the program's behavior. Wherever possible, we have compared di�erent solutions to thesame problem by applying each algorithm to the same example program. In addition wehave discussed the possibilities and problems associated with the integration of solutionsfor `orthogonal' language features.In Section 3.6, we have compared and classi�ed algorithms for static slicing. Besideslisting the speci�c slicing problems studied in the literature, we have compared the ac-curacy and e�ciency of static slicing algorithms. The most signi�cant conclusions ofSection 3.6 can be summarized as follows:basic algorithms For intraprocedural static slicing in the absence of procedures, un-structured control ow, composite datatypes and pointers, and interprocess commu-nication, the accuracy of methods based on dataow equations [85], information-owrelations [16], and program dependence graphs [69] is essentially the same. PDG-based algorithms have the advantage that dataow analysis has to be performed51

www.manaraa.com

only once; after that, slices can be extracted in linear time. This is especially usefulwhen several slices of the same program are required.procedures The �rst solution for interprocedural static slicing, presented by Weiser in[85], is inaccurate for two reasons. First, this algorithm does not use exact depen-dence relations between input and output parameters. Second, the call-return struc-ture of execution paths is not taken into account. We have shown in Section 3.2.1that Weiser's algorithm may slice a procedure several times in the presence of loops.The solution by Bergeretti and Carr�e [16] does not compute truly interproceduralslices because no procedures other than the main program are sliced. Moreover,the approach by Bergeretti and Carr�e is not su�ciently general to handle recursion.Exact solutions to the interprocedural static slicing problem have been presentedby Hwang, Du, and Chou [45], Reps, Horwitz and Binkley [44], and Reps, Horwitz,Sagiv, and Rosay [74, 75]. The Reps-Horwitz-Sagiv-Rosay algorithm for interproce-dural static slicing is the most e�cient one.arbitrary control ow Lyle was the �rst to present an algorithm for static slicing in thepresence of arbitrary control ow [64]. The solution he presents in very conservative:it may include more goto statements than necessary. Agrawal has shown in [2] thatsolutions proposed by Gallagher and Lyle [31, 32] and by Jiang et al. are incorrect.Precise solutions for static slicing in the presence of arbitrary control ow have beenproposed by Ball and Horwitz [8, 9], Choi and Ferrante [21], and Agrawal [2]. It isnot clear how the e�ciency of these algorithms compares.composite datatypes/pointers Lyle has presented a conservative algorithm for staticslicing in the presence of arrays in [64]. The algorithm proposed by Jiang et al. in[47] is incorrect. Agrawal, DeMillo, and Spa�ord propose a PDG-based algorithmfor static slicing in the presence of composite variables and pointers.interprocess communication The only approach for static slicing of concurrent pro-grams was proposed by Cheng [19]. Unfortunately, Cheng has not provided a justi-�cation of the correctness of his algorithm.We have compared and classi�ed algorithms for dynamic slicing in Section 4.5. Due todi�erences in computation methods and dependence graph representations, the potentialfor integration of the dynamic slicing solutions for `orthogonal' problems is less clear thanin the static case. The conclusions of Section 4.5 may be summarized as follows:basic algorithms Methods for intraprocedural dynamic slicing in the absence of pro-cedures, composite datatypes and pointers, and interprocess communication wereproposed by Korel and Laski [56, 57], Agrawal and Horgan [5], and Gopal [33].The slices determined by the Agrawal-Horgan algorithm and the Gopal algorithmare more accurate than the slices computed by the Korel-Laski algorithm, becauseKorel and Laski insist that their slices be executable programs. The Korel-Laski al-gorithm and Gopal's algorithm require an unbounded amount of space because theentire execution history of the program has to be stored. Since slices are computedby traversing this history, the amount of time needed to compute a slice dependson the number of executed statements. A similar statement can be made for theowback analysis algorithm of [22, 67]. The algorithm proposed by Agrawal and52

www.manaraa.com

Horgan based on Reduced Dynamic Dependence Graphs requires at most O(2n)space, where n is the number of statements in the program. However, the timeneeded by the Agrawal-Horgan algorithm also depends on the number of executedstatements because for each executed statement, the dependence graph may have tobe updated.procedures Two dependence graph based algorithms for interprocedural dynamic slicingwere proposed by Agrawal, DeMillo, and Spa�ord [3], and by Kamkar, Shahmehri,and Fritzson [51, 52]. The former method relies heavily on the use of memory cellsas a basis for computing dynamic reaching de�nitions. Various procedure-passingmechanisms can be modeled easily by assignments of actual to formal and formal toactual parameters at the appropriate moments. The latter method is also expressedas a reachability problem in a (summary) graph. However, there are a number ofdi�erences with the approach of [3]. First, parts of the graph can be constructedat compile-time. This is more e�cient, especially in cases where many calls to thesame procedure occur. Second, Kamkar et al. study procedure-level slices; that is,slices consisting of a set of procedure calls rather than a set of statements. Third,the size of a summary graph depends on the number of executed procedure calls,whereas the graphs of [3] are more space e�cient due to `fusion' of vertices with thesame transitive dependences. It is unclear if one algorithm produces more preciseslices than the other.arbitrary control ow As far as we know, dynamic slicing in the presence of arbitrarycontrol ow has not been studied yet. However, we conjecture that the solutions forthe static case [2, 8, 9, 21] may be adapted for dynamic slicing.composite datatypes/pointers Two approaches for dynamic slicing in the presenceof composite datatypes and pointers were proposed, by Korel and Laski [57], andAgrawal, DeMillo, and Spa�ord [3]. The algorithms di�er in their computationmethod: dynamic ow concepts vs. dependence graphs, and in the way compositedatatypes and pointers are represented. Korel and Laski treat components of com-posite datatypes as distinct variables, and invent names for dynamically allocatedobjects and pointers whereas Agrawal, DeMillo, and Spa�ord base their de�nitionson de�nitions and uses of memory cells. It is unclear how the accuracy of these algo-rithms compares. The time and space requirements of both algorithms are essentiallythe same as in the case where only scalar variables occur.interprocess communication Several methods for dynamic slicing of distributed pro-grams have been proposed. Korel and Ferguson [55] and Duesterwald, Gupta, andSo�a [25] compute slices that are executable programs, but have a di�erent wayof dealing with nondeterminism in distributed programs: the former approach re-quires a mechanism for replaying the rendezvous in the slice in the same relativeorder as they occurred in the original program whereas the latter approach replacesnondeterministic communication statements in the program by deterministic com-munication statements in the slice. Cheng [19] and Choi et al. [22, 67] do notconsider this problem because the slices they compute are not executable programs.Duesterwald, Gupta, and So�a [25] and Cheng [19] use static dependence graphs forcomputing dynamic slices. Although this is more space-e�cient than the other ap-53

www.manaraa.com

proaches, the computed slices will be inaccurate (see the discussion in Section 4.1.1).The algorithms by Korel and Ferguson and by Choi et al. both require an amount ofspace that depends on the number of executed statements. Korel and Ferguson re-quire their slices to be executable; therefore these slices will contain more statementsthan those computed by the algorithm of [22, 67].In Section 5, we have argued that compiler-optimization techniques and semantics-preserving program transformations can be used to obtain more accurate slices [29].In Section 6, we have presented an overview how slicing techniques are applied inthe areas of debugging, program analysis, program integration, software maintenance,dataow testing, and others.AcknowledgementsI am grateful to John Field, Jan Heering, Susan Horwitz, Paul Klint, G. Ramalingam,and Tom Reps for many fruitful discussions and comments on earlier drafts of this paper.Tom Reps provided the program and picture of Figure 10. Susan Horwitz provided theprogram of Figure 13. The programs shown in Figures 2 and 16 are adaptations of exampleprograms in [1].References[1] Agrawal, H. Towards automatic debugging of Computer Programs. PhD thesis, Purdue University,1992.[2] Agrawal, H. On slicing programs with jump statements. In Proceedings of the ACM SIGPLAN'94Conference on Programming Language Design and Implementation (Orlando, Florida, 1994). Toappear.[3] Agrawal, H., DeMillo, R., and Spafford, E. Dynamic slicing in the presence of unconstrainedpointers. In Proceedings of the ACM Fourth Symposium on Testing, Analysis, and Veri�cation (TAV4)(1991), pp. 60{73. Also Purdue University technical report SERC-TR-93-P.[4] Agrawal, H., DeMillo, R., and Spafford, E. Debugging with dynamic slicing and backtracking.Software|Practice and Experience 23, 6 (1993), 589{616.[5] Agrawal, H., and Horgan, J. Dynamic program slicing. In Proceedings of the ACM SIGPLAN'90Conference on Programming Language Design and Implementation (1990), pp. 246{256. SIGPLANNotices 25(6).[6] Aho, A., Sethi, R., and Ullman, J. Compilers. Principles, Techniques and Tools. Addison-Wesley,1986.[7] Alpern, B., Wegman, M., and Zadeck, F. Detecting equality of variables in programs. InConference Record of the Fifteenth ACM Symposium on Principles of Programming Languages (SanDiego, 1988), pp. 1{11.[8] Ball, T. The Use of Control-Flow and Control Dependence in Software Tools. PhD thesis, Universityof Wisconsin-Madison, 1993.[9] Ball, T., and Horwitz, S. Slicing programs with arbitrary control-ow. In Proceedings of the FirstInternational Workshop on Automated and Algorithmic Debugging (1993), P. Fritzson, Ed., vol. 749of Lecture Notes in Computer Science, Springer-Verlag, pp. 206{222.[10] Balzer, R. EXDAMS - EXtendable Debugging And Monitoring System. In Proceedings of theAFIPS SJCC (1969), vol. 34, pp. 567{586.[11] Banning, J. An e�cient way to �nd the side e�ects of procedure calls and the aliases of variables.In Conference Record of the Sixth ACM Symposium on Principles of Programming Languages (1979),pp. 29{41. 54

www.manaraa.com

[12] Barnes, J. Programming in Ada, second ed. International Computer Science Series. Addison-Wesley,1982.[13] Barth, J. A practical interprocedural data ow analysis algorithm. Communications of the ACM21, 9 (1978), 724{736.[14] Bates, S., and Horwitz, S. Incremental program testing using program dependence graphs.In Conference Record of the Twentieth ACM Symposium on Principles of Programming Languages(Charleston, SC, 1993), pp. 384{396.[15] Beck, J., and Eichmann, D. Program and interface slicing for reverse engineering. In Proceedingsof the 15th International Conference on Software Engineering (Baltimore, 1993).[16] Bergeretti, J.-F., and Carr�e, B. Information-ow and data-ow analysis of while-programs.ACM Transactions on Programming Languages and Systems 7, 1 (1985), 37{61.[17] Bergstra, J., Heering, J., and Klint, P., Eds. Algebraic Speci�cation. ACM Press FrontierSeries. The ACM Press in co-operation with Addison-Wesley, 1989.[18] Binkley, D. Interprocedural constant propagation using dependence graphs and a data-ow model.In Proceedings of the 5th International Conference on Compiler Construction|CC'94 (Edinburgh,UK, 1994), P. Fritzson, Ed., vol. 786 of LNCS, pp. 374{388.[19] Cheng, J. Slicing concurrent programs { a graph-theoretical approach. In Proceedings of the FirstInternational Workshop on Automated and Algorithmic Debugging (1993), P. Fritzson, Ed., vol. 749of Lecture Notes in Computer Science, Springer-Verlag, pp. 223{240.[20] Choi, J.-D., Burke, M., and Carini, P. E�cient ow-sensitive interprocedural computation ofpointer-induced aliases and side e�ects. In Conference Record of the Twentieth ACM Symposium onPrinciples of Programming Languages (1993), ACM, pp. 232{245.[21] Choi, J.-D., and Ferrante, J. Static slicing in the presence of GOTO statements. ACM Transac-tions on Programming Languages and Systems (May 1994). To Appear.[22] Choi, J.-D., Miller, B., and Netzer, R. Techniques for debugging parallel programs with owbackanalysis. ACM Transactions on Programming Languages and Systems 13, 4 (1991), 491{530.[23] Cooper, K., and Kennedy, K. Interprocedural side-e�ect analysis in linear time. In Proceedings ofthe ACM SIGPLAN'88 Conference on Programming Language Design and Implementation (Atlanta,Georgia, 1988), pp. 57{66. SIGPLAN Notices 23(7).[24] Cytron, R., Ferrante, J., and Sarkar, V. Compact representations for control dependence. InProceedings of the ACM SIGPLAN'90 Conference on Programming Language Design and Implemen-tation (White Plains, New York, 1990), pp. 337{351. SIGPLAN Notices 25(6).[25] Duesterwald, E., Gupta, R., and Soffa, M. Distributed slicing and partial re-execution fordistributed programs. In Proceedings of the �fth workshop on Languages and Compilers for ParallelComputing (New Haven, Connecticut, 1992), pp. 329{337.[26] Duesterwald, E., Gupta, R., and Soffa, M. Rigorous data ow testing through output inuences.In Proceedings of the Second Irvine Software Symposium ISS'92 (California, 1992), pp. 131{145.[27] Ferrante, J., Ottenstein, K., and Warren, J. The program dependence graph and its use inoptimization. ACM Transactions on Programming Languages and Systems 9, 3 (1987), 319{349.[28] Field, J. A simple rewriting semantics for realistic imperative programs and its application to pro-gram analysis. In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation (1992), pp. 98{107.[29] Field, J., and Tip, F. Dynamic dependence in term rewriting systems and its application toprogram slicing. Report CS-R94xx, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,1994. Forthcoming. Also to appear in proceedings of PLILP '94.[30] Fritzson, P., Shahmehri, N., Kamkar, M., and Gyimothy, T. Generalized algorithmic debug-ging and testing. ACM Letters on Programming Languages and Systems 1, 4 (1992), 303{322.[31] Gallagher, K. Using Program Slicing in Software Maintenance. PhD thesis, University of Maryland,1989.[32] Gallagher, K., and Lyle, J. Using program slicing in software maintenance. IEEE Transactionson Software Engineering 17, 8 (1991), 751{761.55

www.manaraa.com

[33] Gopal, R. Dynamic program slicing based on dependence relations. In Proceedings of the Conferenceon Software Maintenance (1991), pp. 191{200.[34] Gupta, R., Harrold, M., and Soffa, M. An approach to regression testing using slicing. InProceedings of the Conference on Software Maintenance (1992), pp. 299{308.[35] Gupta, R., and Soffa, M. A framework for generalized slicing. Technical report TR-92-07, Uni-versity of Pittsburgh, 1992.[36] Hausler, P. Denotational program slicing. In Proceedings of the 22nd Hawaii International Confer-ence on System Sciences (Hawaii, 1989), pp. 486{494.[37] Horwitz, S. Identifying the semantic and textual di�erences between two versions of a program. InProceedings of the ACM SIGPLAN'90 Conference on Programming Language Design and Implemen-tation (White Plains, New York, 1990), pp. 234{245. SIGPLAN Notices 25(6).[38] Horwitz, S., Pfeiffer, P., and Reps, T. Dependence analysis for pointer variables. In Proceed-ings of the ACM 1989 Conference on Programming Language Design and Implementation (Portland,Oregon, 1989). SIGPLAN Notices 24(7).[39] Horwitz, S., Prins, J., and Reps, T. Integrating non-interfering versions of programs. In Confer-ence Record of the ACM SIGSOFT/SIGPLAN Symposium on Principles of Programming Languages(1988), pp. 133{145.[40] Horwitz, S., Prins, J., and Reps, T. On the adequacy of program dependence graphs for repre-senting programs. In Conference Record of the Fifteenth Annual ACM Symposium on Principles ofProgramming Languages (1988), ACM, pp. 146{157.[41] Horwitz, S., Prins, J., and Reps, T. Integrating noninterfering versions of programs. ACMTransactions on Programming Languages and Systems 11, 3 (1989), 345{387.[42] Horwitz, S., and Reps, T. E�cient comparison of program slices. Acta Informatica 28 (1991),713{732.[43] Horwitz, S., and Reps, T. The use of program dependence graphs in software engineering. InProceedings of the 14th International Conference on Software Engineering (Melbourne, Australia,1992), pp. 392{411.[44] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence graphs. ACMTransactions on Programming Languages and Systems 12, 1 (1990), 26{61.[45] Hwang, J., Du, M., and Chou, C. Finding program slices for recursive procedures. In Proceedingsof the 12th Annual International Computer Software and Applications Conference (Chicago, 1988).[46] Hwang, J., Du, M., and Chou, C. The inuence of language semantics on program slices. InProceedings of the 1988 International Conference on Computer Languages (Miami Beach, 1988).[47] Jiang, J., Zhou, X., and Robson, D. Program slicing for C - the problems in implementation. InProceedings of the Conference on Software Maintenance (1991), pp. 182{190.[48] Kamkar, M. An overview and comparative classi�cation of static and dynamic program slicing.Technical Report LiTH-IDA-R-91-19, Link�oping University, Link�oping, 1991. To appear in Journalof Systems and Software.[49] Kamkar, M. Interprocedural Dynamic Slicing with Applications to Debugging and Testing. PhDthesis, Link�oping University, 1993.[50] Kamkar, M., Fritzson, P., and Shahmehri, N. Interprocedural dynamic slicing applied to inter-procedural data ow testing. In Proceedings of the Conference on Software Maintenance (Montreal,Canada, 1993), pp. 386{395.[51] Kamkar, M., Fritzson, P., and Shahmehri, N. Three approaches to interprocedural dynamicslicing. Microprocessing and Microprogramming 38 (1993), 625{636.[52] Kamkar, M., Shahmehri, N., and Fritzson, P. Interprocedural dynamic slicing. In Proceedings ofthe 4th International Conference on Programming Language Implementation and Logic Programming(1992), M. Bruynooghe and M. Wirsing, Eds., vol. 631 of Lecture Notes in Computer Science, Springer-Verlag, pp. 370{384.[53] Klint, P. A meta-environment for generating programming environments. ACM Transactions onSoftware Engineering and Methodology 2, 2 (1993), 176{201.56

www.manaraa.com

[54] Klop, J. Term rewriting systems. In Handbook of Logic in Computer Science, Volume 2. Background:Computational Structures, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Oxford University Press,1992, pp. 1{116.[55] Korel, B., and Ferguson, R. Dynamic slicing of distributed programs. Applied Mathematics andComputer Science 2, 2 (1992), 199{215.[56] Korel, B., and Laski, J. Dynamic program slicing. Information Processing Letters 29, 3 (1988),155{163.[57] Korel, B., and Laski, J. Dynamic slicing of computer programs. Journal of Systems and Software13 (1990), 187{195.[58] Kuck, D., Kuhn, R., Padua, D., Leasure, B., and Wolfe, M. Dependence graphs and compileroptimizations. In Conference Record of the Eighth ACM Symposium on Principles of ProgrammingLanguages (1981), pp. 207{218.[59] Lakhotia, A. Graph theoretic foundations of program slicing and integration. Report CACS TR-91-5-5, University of Southwestern Louisiana, 1991.[60] Lakhotia, A. Improved interprocedural slicing algorithm. Report CACS TR-92-5-8, University ofSouthwestern Louisiana, 1992.[61] Landi, W., and Ryder, B. A safe approximate algorithm for interprocedural pointer aliasing. InProceedings of the 1992 ACM Conference on Programming Language Design and Implementation (SanFrancisco, 1992), pp. 235{248. SIGPLAN Notices 27(7).[62] Larus, J., and Chandra, S. Using tracing and dynamic slicing to tune compilers. Computersciences technical report #1174, University of Wisconsin-Madison, 1993.[63] Leung, H., and Reghbati, H. Comments on program slicing. IEEE Transactions on SoftwareEngineering SE-13, 12 (1987), 1370{1371.[64] Lyle, J. Evaluating Variations on Program Slicing for Debugging. PhD thesis, University of Maryland,1984.[65] Lyle, J., and Weiser, M. Automatic bug location by program slicing. In Proceedings of the SecondInternational Conference on Computers and Applications (Beijing (Peking), China, 1987), pp. 877{883.[66] Maydan, D., Hennessy, J., and Lam, M. E�cient and exact data dependence analysis. In Pro-ceedings of the ACM SIGPLAN'91 Conference on Programming Language Design and Implementation(1991), pp. 1{14. SIGPLAN Notices 26(6).[67] Miller, B., and Choi, J.-D. A mechanism for e�cient debugging of parallel programs. In Proceed-ings of the ACM SIGPLAN'88 Conference on Programming Language Design and Implementation(Atlanta, 1988), pp. 135{144. SIGPLAN Notices 23(7).[68] Ott, L. M., and Thuss, J. The relationship between slices and module cohesion. In Proceedings ofthe 11th International Conference on Software Engineering (1989), pp. 198{204.[69] Ottenstein, K., and Ottenstein, L. The program dependence graph in a software developmentenvironment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium onPractical Software Development Environments (1984), pp. 177{184. SIGPLAN Notices 19(5).[70] Podgurski, A., and Clarke, L. A formal model of program dependences and its implications forsoftware testing, debugging, and maintenance. IEEE Transactions on Software Engineering 16, 9(1990), 965{979.[71] Reps, T. Algebraic properties of program integration. Science of Computer Programming 17 (1991),139{215.[72] Reps, T. On the sequential nature of interprocedural program-analysis problems. Unpublished report,University of Copenhagen, 1994.[73] Reps, T., and Bricker, T. Illustrating interference in interfering versions of programs. In Pro-ceedings of the Second International Workshop on Software Con�guration Management (Princeton,1989), pp. 46{55. ACM SIGSOFT Software Engineering Notes Vol.17 No.7.[74] Reps, T., Horwitz, S., Sagiv, M., and Rosay, G. Speeding up slicing. Unpublished report,Datalogisk Institut, University of Copenhagen, 1994.57

www.manaraa.com

[75] Reps, T., Sagiv, M., and Horwitz, S. Interprocedural dataow analysis via graph reachability.Report DIKU TR 94-14, University of Copenhagen, Copenhagen, 1994.[76] Reps, T., and Yang, W. The semantics of program slicing and program integration. In Proceedingsof the Colloquium on Current Issues in Programming Languages (1989), vol. 352 of Lecture Notes inComputer Science, Springer Verlag, pp. 60{74.[77] Shahmehri, N. Generalized Algorithmic Debugging. PhD thesis, Link�oping University, 1991.[78] Shapiro, E. Algorithmic Program Debugging. MIT Press, 1982.[79] Venkatesh, G. The semantic approach to program slicing. In Proceedings of the ACM SIGPLAN'91Conference on Programming Language Design and Implementation (1991), pp. 107{119. SIGPLANNotices 26(6).[80] Wegman, M., and Zadeck, F. Constant propagation with conditional branches. ACM Transactionson Programming Languages and Systems 13, 2 (1991), 181{210.[81] Weihl, W. Interprocedural data ow analysis in the presence of pointers, procedure variables, andlabel variables. In Conference Record of the Seventh ACM Symposium on Principles of ProgrammingLanguages (1980), pp. 83{94.[82] Weiser, M. Program slices: formal, psychological, and practical investigations of an automaticprogram abstraction method. PhD thesis, University of Michigan, Ann Arbor, 1979.[83] Weiser, M. Programmers use slices when debugging. Communications of the ACM 25, 7 (1982),446{452.[84] Weiser, M. Reconstructing sequential behavior from parallel behavior projections. InformationProcessing Letters 17, 3 (1983), 129{135.[85] Weiser, M. Program slicing. IEEE Transactions on Software Engineering 10, 4 (1984), 352{357.[86] Weiser, M. Private communication, 1994.[87] Zima, H., and Chapman, B. Supercompilers for Parallel and Vector Computers. ACM Press FrontierSeries. ACM Press, New York, 1991.

58

